
The Binary Number System

Robert B. Heckendorn

University of Idaho

August 24, 2017

Numbers are said to be represented by a place-value system, where the value of a symbol depends
on where it is... its place. For instance, in the decimal number system, an 8 in right most position in a
number means 8 but in the third place from the right means 800. That is, each position from the right side
of the number has an associated value. Each position to the left is worth 10 more than the next position
to the right. For example: in the number 7654, the rightmost place is worth 1, the next to the right most
position is worth 10, next position is worth 100 and the left most is worth 1000. The number 7654 is
therefore: 7 ∗ 1000 + 6 ∗ 100 + 5 ∗ 10 + 4 ∗ 1 which is 7654 in decimal. It is important to see that 7654 is
a representation for a number; a way to write it. It is not the number itself. For example Romans might
use MMMMMMMDCLIV to represent the same number. Roman numerals are not a place value system:
a V is always five regardless of if it is VIII for 8 or IV for 4.

In the base 10 number system, numbers are represented by a list of symbols of which there are 10 kinds
of symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The position or place-values are powers of 10: 100, 101, 102, 103, ... or
1, 10, 100, 1000, ...

Long ago computing machines used mechanical mechanisms and decimal representation but now with
fast electricity based computing devices a new way to encode numbers and data in general is needed; a
way that uses only on and off, positive and negative. This number system is binary.

1 Binary

Binary is a place-value representation for numbers. In binary, the base of the number system is 2.

Each position to the left is worth 2 more than the next position to the right. For example: in the
number 1101, the rightmost position is worth 1, the position next to the right most position is worth 2,
next position is worth 4 and the left most is worth 8. The number 1101 is therefore: 1∗8+1∗4+0∗2+1∗1
which is 13 in decimal. In short, converting from binary to decimal is as easy as just adding up the binary
digits times their place-values.

The base 2 number system, numbers are represented by a list of symbols of which there are 2 kinds:
0, 1. The position values are powers of 2: 20, 21, 22, 23, ... or 1, 2, 4, 8, 16, ...

Counting from 0 to 10 in binary is: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010. See how the
numbers from 0 to 7 can be represented by 3 binary digits and at 8 you have to go to 4 binary digits. The
term bit is short for binary digit.

Because any nonnegative integer can be represented in binary, those numbers can be represented as a
string of 1’s/0’s, electricity on/electricity off, positive current/negative current, north magnetic field/south
magnetic field, etc. So this is how numbers are represented inside modern computers which use electric

1

components and magnetic fields. Music on CDs is stored the same way, as 1’s/0’s on the CD surface, etc.

Converting decimal to binary is not as easy. Let’s look at a 4 bit example. Here is how to convert a
number between 0 and 15 inclusive into a 4 bit binary number:

is it >=8?

if yes write 1 and subtract 8

if no write 0

is it >=4?

if yes write 1 and subtract 4

if no write 0

is it >=2?

if yes write 1 and subtract 2

if no write 0

is it >=1?

if yes write 1 and subtract 1

if no write 0

Pretty easy, eh? How would you extend this to 5 bits? Hint: the 5th place in a binary number is worth
16. So... we start with a test if the number is >= 16 and that gives us the first bit. Then we just do the
four tests of the 4 bit case above.

It is important to see that it is not completely trivial to convert decimal to binary. It requires knowing
the powers of 2, asking a question for each digit and subtracting off the power of two if the answer is yes.
In short, it requires answering a yes/no question for every power of 2 up to the size of the number you
want to convert. Let’s run through the above algorithm with the decimal number 13:

is 13 >= 8?

yes: write 1 and subtract off 8 so we look at the number 5.

is 5 >= 4?

yes: write 1 and subtract off 4 so we look at the number 1.

is 1 >= 2?

no: write 0

is 1 >= 1?

yes: write 1 and subtract off 1 so we look at the number 0.

So the number 13 in decimal is 1101 in binary. What is the decimal number 23 in binary1? Hint: you
have to add a test for 16 to the above approach.

Each binary digit, or bit for short, represents the quantity of information that can be determined
by answering a yes or no question. You can see this in the 4 bit conversion routine above. Four questions

1The answer is 10111

2

are asked. The four answers were then encoded as binary digits. Bits are the fundamental unit of
information!

A byte is 8 bits. Memory is often divided up into blocks of 8 bits called bytes. A byte is enough to
contain a simple encoding of a character. ASCII is one such encoding standard.

It takes about 31
3 bits to represent each decimal digit. That means a 10 bit number is about 3

decimal digits. The number 1, 000, 000 in decimal is about 20 bits long! In fact: 1, 000, 000 in decimal is
11110100001001000000 in binary. That is a lot of writing to express a number, but if you store the number
1, 000, 000 in a computer that is exactly how it will store it. It may use current, magnetics, or capacitance
to store the 1’s and 0’s but the number will be 11110100001001000000 in binary all the same.

2 Octal and Hex

Computer scientists use two shortcut bases to make writing binary easier for humans. The first is base
8 or octal. The second is base 16 or hexadecimal. The reason they use these is it is insanely easy to
convert from binary to octal and back! Same for hexadecimal.

Let’s do octal to binary and back. What makes octal so easy is, unlike a decimal digit, there are exactly
3 binary bits in each octal digit! So for every octal digit I can translate that into 3 bits. This is because
23 = 8. For example: the octal number: 3705 is 4 octal digits. This should become 12 binary digits: 3 is
011 in binary, 7 is 111 in binary, 0 is 000 in binary, 5 is 101 in binary. So 37058 = 0111110001012. Note
the use of subscripts to denote the base of the number!! Yes, it is that straight forward. If you
know the 3 bit values for each of the 8 octal digits you are practically done.

What is 111101000010010000002 in octal? First divide the number in groups of 3 starting on the right:
11 110 100 001 001 000 000. Then simply read off the octal digits: 36411008.

Hexadecimal numbers are base 16. Hexadecimal is sometimes simply referred to as hex. Each position
to the left is worth 16 more than the next position to the right. The base 16 number system, numbers
are represented by a list of symbols of which there are 16 kinds: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f.
(When they ran out of digits they used letters.) The position values are powers of 16: 160, 161, 162, 163, ...
or 1, 16, 256, 4096, ...

For example: in the hex number 1fab, the rightmost position is worth 1, the next to the right most
position is worth 16, next position is worth 256 and the left most is worth 4096. The number 1fab
is therefore: 1 ∗ 4096 + 15 ∗ 256 + 10 ∗ 16 + 11 ∗ 1 which is 8107 in decimal. But it is super easy to
convert to binary one hex digit at a time because like octal each hex digit is worth exactly 4 bits:
1fab16 = 0001 1111 1010 10112 = 00011111101010112. This is because the 1→ 0001, f → 1111, a→ 1010,
b→ 1011.

When computer scientists wants to write a binary number they usually use either octal or hex because
it is so easy to write.

3

Table 1: A table of counting in different bases. The 8-bit case shows what it might be like if you had a
number in hardware that could store 8 bits.

Hexadecimal Decimal Octal Binary 8-bit Binary

0 0 0 0 00000000

1 1 1 1 00000001

2 2 2 10 00000010

3 3 3 11 00000011

4 4 4 100 00000100

5 5 5 101 00000101

6 6 6 110 00000110

7 7 7 111 00000111

8 8 10 1000 00001000

9 9 11 1001 00001001

a 10 12 1010 00001010

b 11 13 1011 00001011

c 12 14 1100 00001100

d 13 15 1101 00001101

e 14 16 1110 00001110

f 15 17 1111 00001111

10 16 20 10000 00010000

11 17 21 10001 00010001

12 18 22 10010 00010010

13 19 23 10011 00010011

14 20 24 10100 00010100

15 21 25 10101 00010101

16 22 26 10110 00010110

17 23 27 10111 00010111

18 24 30 11000 00011000

19 25 31 11001 00011001

1a 26 32 11010 00011010

1b 27 33 11011 00011011

1c 28 34 11100 00011100

1d 29 35 11101 00011101

1e 30 36 11110 00011110

1f 31 37 11111 00011111

4

The key ideas I want you to know:

• Current day computers use electricity and so the binary number system has become a convenient
way to represent information.

• As an example, binary is a great way to represent integers.

• If a Computer Scientist needs to talk about the detail of what the representation of a number they
may use binary, octal, or hexadecimal.

• The bit is the fundamental unit to measure the quantity of information. It represents the answer to
a yes or no question.

3 A Binary Card Trick

Below are the cards for a Binary Card Trick. Cut them out. Ask person to think of a number between
1 and 31 inclusive but don’t tell you the number. Now hand the cards to the person and tell them to select
all the cards that have their secret number on them. When they hand you the selected cards simply add
the numbers in the upper left corner and that is the number they are thinking of. Amazing? Not really,
it is simply the binary number system.

Why does this work? On the card with a 1 in the upper left are all the numbers that have a 1 in right
most place in the binary representation of the number. That is the 1’s place. The card with a 2 in the
upper left are all the numbers that have a 1 in next to last position in the binary representation of the
number. That is the 2’s place. The 4 card is for the 4’s place, etc. By handing you that card they are
answering a simple yes/no question and giving you one bits worth of information. When they don’t hand
you a card say the 8 card, that means means there is a 0 in the 8’s place. Another way to say this is the
question for the card with a 1 in the upper left is “What is the right most digit in the binary representation
of the number”. When they hand you all the selected cards you have the binary for the number and you
simply add the place-value of each of the 1 bits. That place value is the number in the upper left. That
is because that is always a number that looks like a 1 followed by some number of 0’s. Note also that it
must be the case that each secret number will cause a different set of cards to be chosen? Why? Because
each number has a unique binary number. What would the cards look like if the secret number was from
1 to 63 inclusive? Do the cards below have to change to handle the numbers between 0 and 31 inclusive
instead of between 1 and 31 inclusive?

5

1 3 5 7

9 11 13 15

17 19 21 23

25 27 29 31

2 3 6 7

10 11 14 15

18 19 22 23

26 27 30 31

4 5 6 7

12 13 14 15

20 21 22 23

28 29 30 31

8 9 10 11

12 13 14 15

24 25 26 27

28 29 30 31

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

6

4 Converting decimal directly to octal and hexadecimal

Converting to octal is based on powers of 8: 1, 8, 64, 512, 4096, 32768, ... Here is an algorithm for the
first 4 octal digits.

is it >=512?

if yes write integer portion of number/512 and subtract that many 512’s

if no write 0

is it >=64?

if yes write integer portion of number/64 and subtract that many 64’s

if no write 0

is it >=8?

if yes write integer portion of number/8 and subtract that many 8’s

if no write 0

is it >=1?

if yes write integer portion of number/1 and subtract that many 1’s

if no write 0

For example: What is 666 in octal?

• 512 goes into 666 1 time with a remainder of 154 so the first octal digit is 1.

• 64 goes into 154 2 times with a remainder of 26 so the second octal digit is 2.

• 8 goes into 26 3 times with a remainder of 2 so the third octal digit is 3.

• 1 goes into 2 2 times with a remainder of 0 so the third octal digit is 2.
the answer is 12328.

Similarly the algorithm for converting a number into as many as 4 hex digits is:

is it >=4096?

if yes write integer portion of number/4096 and subtract that many 4096’s

if no write 0

is it >=256?

if yes write integer portion of number/256 and subtract that many 256’s

if no write 0

is it >=16?

if yes write integer portion of number/16 and subtract that many 16’s

if no write 0

7

is it >=1?

if yes write integer portion of number/1 and subtract that many 1’s

if no write 0

What is 43785 in hex?

• 4096 goes into 43785 10 times with a remainder of 2825 so the first hex digit is 10. In hex this is
represented as an a. See the table for counting in different bases.

• 256 goes into 2825 11 times with a remainder of 9 so the second hex digit is 11 or b.

• 16 goes into 9 0 times with a remainder of 9 so the third hex digit is 0.

• 1 goes into 9 9 times with a remainder of 0 so the third hex digit is 9.

The answer is ab0916. Notice that because base 16 is larger that 10 the number of digits to represent
a number is less than or equal to the number of digits to represent a number in base 10.

5 Binary can also Encode Characters

ASCII is a 7-bit encoding of characters, the upper bit is zero in 8 bit bytes. It is given in the table below.
UTF-8 subsumes ASCII and is the most popular on the web.

Binary:

00000000 nul 00000001 soh 00000010 stx 00000011 etx 00000100 eot 00000101 enq 00000110 ack 00000111 bel

00001000 bs 00001001 ht 00001010 nl 00001011 vt 00001100 np 00001101 cr 00001110 so 00001111 si

00010000 dle 00010001 dc1 00010010 dc2 00010011 dc3 00010100 dc4 00010101 nak 00010110 syn 00010111 etb

00011000 can 00011001 em 00011010 sub 00011011 esc 00011100 fs 00011101 gs 00011110 rs 00011111 us

00100000 sp 00100001 ! 00100010 " 00100011 # 00100100 $ 00100101 % 00100110 & 00100111 ’

00101000 (00101001) 00101010 * 00101011 + 00101100 , 00101101 - 00101110 . 00101111 /

00110000 0 00110001 1 00110010 2 00110011 3 00110100 4 00110101 5 00110110 6 00110111 7

00111000 8 00111001 9 00111010 : 00111011 ; 00111100 < 00111101 = 00111110 > 00111111 ?

01000000 @ 01000001 A 01000010 B 01000011 C 01000100 D 01000101 E 01000110 F 01000111 G

01001000 H 01001001 I 01001010 J 01001011 K 01001100 L 01001101 M 01001110 N 01001111 O

01010000 P 01010001 Q 01010010 R 01010011 S 01010100 T 01010101 U 01010110 V 01010111 W

01011000 X 01011001 Y 01011010 Z 01011011 [01011100 \ 01011101] 01011110 ^ 01011111 _

01100000 ‘ 01100001 a 01100010 b 01100011 c 01100100 d 01100101 e 01100110 f 01100111 g

01101000 h 01101001 i 01101010 j 01101011 k 01101100 l 01101101 m 01101110 n 01101111 o

01110000 p 01110001 q 01110010 r 01110011 s 01110100 t 01110101 u 01110110 v 01110111 w

01111000 x 01111001 y 01111010 z 01111011 { 01111100 | 01111101 } 01111110 ~ 01111111 del

Octal:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel

010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si

020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb

030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us

8

040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 ’

050 (051) 052 * 053 + 054 , 055 - 056 . 057 /

060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7

070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?

100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G

110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O

120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W

130 X 131 Y 132 Z 133 [134 \ 135] 136 ^ 137 _

140 ‘ 141 a 142 b 143 c 144 d 145 e 146 f 147 g

150 h 151 i 152 j 153 k 154 l 155 m 156 n 157 o

160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w

170 x 171 y 172 z 173 { 174 | 175 } 176 ~ 177 del

Decimal:

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel

008 bs 009 ht 010 nl 011 vt 012 np 013 cr 014 so 015 si

016 dle 017 dc1 018 dc2 019 dc3 020 dc4 021 nak 022 syn 023 etb

024 can 025 em 026 sub 027 esc 028 fs 029 gs 030 rs 031 us

032 sp 033 ! 034 " 035 # 036 $ 037 % 038 & 039 ’

040 (041) 042 * 043 + 044 , 045 - 046 . 047 /

048 0 049 1 050 2 051 3 052 4 053 5 054 6 055 7

056 8 057 9 058 : 059 ; 060 < 061 = 062 > 063 ?

064 @ 065 A 066 B 067 C 068 D 069 E 070 F 071 G

072 H 073 I 074 J 075 K 076 L 077 M 078 N 079 O

080 P 081 Q 082 R 083 S 084 T 085 U 086 V 087 W

088 X 089 Y 090 Z 091 [092 \ 093] 094 ^ 095 _

096 ‘ 097 a 098 b 099 c 100 d 101 e 102 f 103 g

104 h 105 i 106 j 107 k 108 l 109 m 110 n 111 o

112 p 113 q 114 r 115 s 116 t 117 u 118 v 119 w

120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 del

Hexadecimal:

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0a nl 0b vt 0c np 0d cr 0e so 0f si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1a sub 1b esc 1c fs 1d gs 1e rs 1f us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 (29) 2a * 2b + 2c , 2d - 2e . 2f /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3a : 3b ; 3c < 3d = 3e > 3f ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4a J 4b K 4c L 4d M 4e N 4f O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5a Z 5b [5c \ 5d] 5e ^ 5f _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6a j 6b k 6c l 6d m 6e n 6f o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7a z 7b { 7c | 7d } 7e ~ 7f del

9

6 Futurama and Binary

It turns out the writers of the TV show Futurama have degrees in Mathematics and have included some
insider humor in their show. Can you tell why the numbers were chosen or what the joke is in the frames
from the show below?

What is funny about this:

Why is this Bender’s apartment number? (Hint: what is this is ASCII?)

10

Why is this exact binary number written in blood on the mirror?

How was this simple pattern made? (Hint: The story line required that the pattern be able to be read the
same in a mirror.)

11

Remember this classic Disney movie?

Using binary to get out of exercise. How does that work?

OK, so this isn’t Futurama but it is related to the topic of number bases. Why did being a horse suggest
that the horse was correct to have 2 + 2→ 10?

12

13

Answers:

• 10 is 2 in binary not 10 in base 10.

• Bender’s apartment number is the ASCII code for ’$’ and Bender is all about money.

• This is the biblical number of the beast: 666 but in binary.

• This is made by counting in 3 bit binary and mirroring it right to left.

• 101 Dalamations, of course.

• 100 in binary is 4 in decimal.

• It assumes that the modern horse has only 1 finger on each “hand” (essentially a horse gallops on its
“finger nail” that we call a hoof). And it assumes that the horse might count up to 4 in the same way
we count up to 10 because we have 10 fingers on our hands. (Some civilizations such as the Maya
counted up to 20, presumably because it included hands and feet.) If it counts 4 as all its fingers
then it might count in base 4 so 10 base 4 would be 4 in base 10.

14

