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Assume you have R samples of data each with C features in an R×C matrix called X. That is, each
sample of C dimensional data is in a row. The matrix could represent any kind of data in which there
are C features in each of R samples. This data could even be a matrix of gray levels of a picture where
each row of gray level pixels is a point in C dimensional space. The data is usually correlated in some
from one feature to some other feature (column to another) but not necessarily adjacent. That is, the
data usually occupies some much lower dimension. Somewhere in the data are the essential features. In
fact, the essential features may be a linear combination of the features given. If they are, we can find
these combinations by using Principle Component Analysis (PCA). In fact, PCA can tell us the relative
contribution from various orthogonal components so we can concern ourselves only with the most salient
features. Sometimes reducing the dimensionality can be used to eliminate noise and help focus an algorithm
on learning the important parts of the data.

1 The PCA Algorithm for Compression

Here is a recapitulation of the algorithm in the book but with more detail and some example data in detail.
I will assume that some data such as the list of eigenvectors comes stored as one eigenvector per row.
The algorithms can be adjusted to work with an assumption that eigenvectors are in columns, but that
was not what I chose here because of the way C/C++ stores matrices. Be sure to check the code you are
using to get the alignment of vectors correct.

1.1 Center the data.

This is done by computing the mean position of the R points in C dimensional space and then subtracting
that mean from each row.

X ′[r] = X[r]−Mean(X) ∀r

Where X[r] the the rth row and Mean returns the mean of all the rows.

If the data in different dimensions are on different scales like 0 to 10 inches vs 0 to 1000000 years then
scaling with Z-score is advised.

X ′[r] = (X[r]−Mean(X))/Stddev(X) ∀r

This makes sure each dimension (column) is scaled within that dimension.
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1.2 Compute covariance matrix.

compute the covariance matrix M using the normalized data X ′.

M = (1/R)X ′
T ·X ′

M should be a C×C matrix. Beware that this is the biased covariance because we divided by R. The
unbiased covariance divides by (R− 1). So know what your covariance routine is producing!

1.3 Compute eigenvalues and eigenvectors of M

The covariance matrix is symmetric and so the eigenvalues are all real numbers. Eigenvalues and eigenvec-
tors come out as pairs, one eigenvalue for each eigenvector and are often computed together in one routine.
The eigenvectors indicate the direction of the variation. The eigenvalues indicate the amount of variation.
When calling an eigenvector routine know if the eigenvectors are normalized or not. Their real purpose is
to give a direction so they are often normalized. Also know if they are sorted by magnitude of eigenvalue.
We will be concerned with the largest eigenvalues.

V = eigenvector(M) W = eigenvalues(M)

1.4 Normalize the eigenvectors

The length of each eigenvector should be 1. This can be done without considering the eigenvalues because
an eigenvector is really a direction and magnitude is not important. If they are not normalized for some
reason you can normalize them.

V ′[r] = Normalize(V [r]) ∀r

1.5 Sort eigenvectors by eigenvalue

We will consider only the eigenvectors with the k largest eigenvalues in magnitude. We can do this by
sorting the eigenvalue/eigenvector pairs by eigenvalue magnitude. They may already be sorted. Check
your documentation. Then taking the K largest.

V̂ = Maxk(W,V ′)

1.6 Translate the normalized data

We now use the reduced set of eigenvectors to reduce the dimension of X. We do this by selecting the k
largest eigenvalues and their associated vectors and ignoring the rest. This makes a matrix of k vectors.

V̂ is now a C×k matrix.

X ′′ = X ′ · V̂ T

The resulting matrix X ′′ is R×k in size rather than R×C. It is smaller! It is this reduced dimension
matrix X ′′ that we could apply our machine learning algorithms to and see if they work better. This
approach has been used in facial recognition for instance.
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1.7 Recovering data from compressed data

Rotate the data back using the reduced eigenvector matrix:

X∗ = X ′′ · V̂

Then move the data back from where it was centered to its old position: Note the Mean(X) is the
original mean.

X∗[r] + Mean(X) ∀r

or if Z-score

(X∗[r] ∗ Stddev(X)) + Mean(X) ∀r

The result should now be R×C matrix. But it is not exactly the same because k < C and this causes
some data to be lost, but because we kept the k largest eigenvalues we kept most of the sources of variance
in out data. Note that if k = C then we should get the exact data back, ignoring tiny errors in the
arithmetic.

1.8 The Component Matrix

Component analysis tells you the “weight” of each of the original dimension’s involvement in the new axes.
In this case multiply each of the eigenvectors by the square root of the corresponding eigenvalue. The
Matrix of scaled eigenvectors is sometimes called the Component Matrix.

Vi

√
Wi ∀i

Values in each vector that are near 1 are strongly influences and values near 0 are weak influences.

2 Mathematica Code

Here is the Mathematica Code from class:

(* get data in g. #Rows = The number of samples. #Cols = dimension of data *)

(* These are commands are operating on vectors of dimension #Cols *)

mx = Mean[g]; (* mean of the row vectors size=NumCols *)

sdx = StandardDeviation[g];

(* OPTIONAL: if data needs to be scaled to similar size use Z-score *)

gn = Map[(# - mx)/sdx &, g];

cc = Transpose[gn].gn/Length[gn]; (* cc <- get *biased* covariance between columns *)

(* give numeric answer to what are the eigenvectors *)

v = N[Eigenvectors[cc]]; (* should return normalized eigenvectors, one per row*)

(* OPTIONAL: if eigenvectors are not normalized do so here *)
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evecs = Map[Normalize, v]; (* evecs <- get normalized eigenvectors *)

(* get numeric version of eigen values *)

evalue = N[Eigenvalues[cc]]; (* evalue <- eigenvalues *)

(* strip the evecs matris to just the number of dimensions you think are important *)

newEvecs = Take[evecs, numDimensions]; (* take the first numDimensions rows *)

(* use the smaller set of vectors to select most important parts of picture *)

newImage = gn.Transpose[newEvecs]; (* take data and compress it *)

(* recover the image from the compressed newImage *)

recoveredImage = newImage.newEvecs;

(* OPTIONAL: restore picture if converted to Z score first *)

z = Map[#*sdx + mx &, recoveredImage ];

3 Example run

An example based an a simple 5×3 pixel “picture”.

Read in a picture (size of Pic: 5 X 3)

101.00000 103.00000 107.00000

109.00000 11.00000 13.00000

17.00000 19.00000 23.00000

29.00000 31.00000 37.00000

41.00000 43.00000 47.00000

Mean vector of the data points (size: 1 X 3)

59.40000 41.40000 45.40000

Covariance Matrix (size: 3 X 3)

1450.24000 458.24000 426.24000

458.24000 1066.24000 1074.24000

426.24000 1074.24000 1083.84000

EigenValues (size: 1 X 3)

2516.22714 1083.82928 0.26359

EigenVectors in rows (size: 3 X 3)

0.50606 0.61096 0.60879

-0.86227 0.34213 0.37342

-0.01986 0.71391 -0.69995

Encoded Pic (size: 5 X 3)

96.18896 8.20753 0.03397

-13.19726 -65.26800 -0.00967

-48.77955 20.53182 0.52930

-26.85218 19.51805 -0.94137

-7.35997 17.01060 0.38777

Recovered pic (size: 5 X 3)

101.00000 103.00000 107.00000
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109.00000 11.00000 13.00000

17.00000 19.00000 23.00000

29.00000 31.00000 37.00000

41.00000 43.00000 47.00000

Compressed pic using only 2 dimensions (size: 5 X 2)

96.18896 8.20753

-13.19726 -65.26800

-48.77955 20.53182

-26.85218 19.51805

-7.35997 17.01060

Recovered compressed pic (size: 5 X 3)

101.00067 102.97575 107.02378

108.99981 11.00690 12.99323

17.01051 18.62213 23.37048

28.98130 31.67206 36.34109

41.00770 42.72316 47.27142

Compressed pic using only 1 dimension (size: 5 X 1)

96.18896

-13.19726

-48.77955

-26.85218

-7.35997

Recovered compressed pic (size: 5 X 3)

108.07776 100.16771 103.95892

52.72134 33.33699 37.36564

34.71443 11.59759 15.70348

45.81108 24.99436 29.05265

55.67538 36.90334 40.91932
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