
PARSER ALGORITHMS

=================

Robert Heckendorn

Computer Science

University of Idaho

TOP DOWN PARSER ALGORITHMS

--------------------------

Ad Hoc Algorithm

Build a recognizer *procedure* for every production.

Avoid using left recursive grammar or infinite recursion in parser will happen.

LL(1) Algorithm

Use a table M index by nonterminal on top of the stack and terminal on

input: M(T, N)

Start with the goal nonterminal.

if top of stack is nonterminal then

if M(input, top of parse stack) is a production then

replace the token on the top of the stack with the rhs of the production

else

error

else

if input==top of stack then

pop stack

else

error

BOTTOM UP PARSER ALGORITHMS

---------------------------

LR(0) Algorithm

// shift (shifts from input and so can only shift a terminal)

if state contains an item: A ::= B.XC where X is a terminal then

if top(input) is X then

shift X -> stack

push state containing A ::= BX.C and set state to this state

else

ERROR

1



end if

// reduce (reduces the stack. No input is consumed.)

// X below may be a list of items

if state contains a complete item A ::= X. then

pop the list of symbols X and their states

state is now the new top(stack) // we set the state twice in a reduce

// state must have a state B:=C.AD

// you can pretend that nonterminal A came in on input

push A on the stack // the case of shifting a nonterminal happens here

push the state B:=CA.D // this state is the "go to" in the LR parse table

set state to state containing B:=CA.D // this is the second time we set the state

end if

Note:

1. Reduce and Shift cannot occur in the same state

2. Only one of the two cases must actionable for any properly constructed DFA

3. Reduce only affects the parse stack

Shift/Reduce Conflict:

if both a reduce and a shift pattern exist in the same state

Reduce/Reduce Conflict:

multiple reductions because a state has more than one complete item

----------------------------------------------------------------------

SLR(1) algorithm

// shift

if state contains an item: A ::= B.XC where X is a terminal then

if top(input) is X then

shift X

push state containing A ::= BX.C and set state to this state

else

try the reduce part // this is different from LR(0)!!!

end if

// reduce

if state contains a complete items A ::= X., B::=Y., C::=Z. then

// this next decision is different from LR(0)!!!

chose A if input \isin Follow(A), B if input \isin Follow(B), etc

pop the list of symbols X and their states

set state to top(stack)

// state must have a state B:=C.AD

2



// you can pretend that nonterminal A came in on input

push A on the stack

push the state B:=CA.D // this is in table given A on input, state on stack

set state to state containing B:=CA.D

end if

Note:

1. uses LR(0) items (dot-thingys)

2. this algorithm gives us the option to not pop off the element

from the stack but if it doesn’t work and instead try a reduce.

3. this algorithm lets us have both shift and reduce in the same

state.

4. This algorithm lets us have multiple reduces in the same state

as long as they have different follow sets.

Shift/Reduce Conflict: if both a reduce and a shift pattern exist in

the same state *plus* terminal X for the shift (A::=B.XC) is also in

the follow set for B::=Z.

Reduce/Reduce Conflict: multiple reductions because a state has more

than one complete item *plus* the follow sets for two reduces are not

disjoint. (they share a terminal)

----------------------------------------------------------------------

LR(1) Algorithm

// shift

if state contains an item: [A ::= B.XC, z] where X is a terminal then

if top(input) is X then

shift X

push state containing [A ::= BX.C, z] and set state to this state

else

try the reduce part

end if

// reduce

if state contains a complete items [A ::= X., u], [A::=X., v], [B::=Y., w]

then

chose A if top(input) \isin u etc. // choose between reduces by lookahead symbol

pop the list of symbols X and their states

set state to top(stack)

// state must have a state [B:=C.AD, z]

push A on the stack

set state to state containing [B:=CA.D, z]

end if

3



Note:

1. uses LR(0) items augmented with look ahead symbols called LR(1) items

Shift/Reduce Conflict: if both a reduce and a shift pattern exist such

that for terminal X for the shift [A::=B.XC, a] is also in the follow

set for [B::=Z., X]

Reduce/Reduce Conflict: multiple reductions because a state has more

than one complete item such that [A::=X., a] and [B::=Y., a]

----------------------------------------------------------------------

LALR(1) Algorithm

1. Is almost the same as the LR(1) algorithm but with a reduced parse table size

and the possibility of a reduce/reduce conflict.

2. It has the same size state machine as the SLR(1) parser.

4


