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Let’s look in detail at the example from page 215 in the book:

<stmt> -> <call-stmt> | <assign-stmt>

<call-stmt> -> identifier

<assign-stmt> -> <var> := <exp>

<var> -> <var> [ <exp> ] | identifier

<exp> -> <var> | number

A stand-in for the grammar above is:

S -> id | V = E

V -> id

E -> V | n

where the capital letters are nonterminals.

Let’s create an SLR(1) parser for this grammar.

This is easy. We use the LR(0) items and build

a NFA then DFA and code from that as follows:

consider the following augmented and split out grammar:

0) S’-> S // augmented grammar

1) S -> id

2) S -> V = E

3) V -> id

4) E -> V

5) E -> n

That leads to these LR(0) items:

0) S’ -> . S

1) S’ -> S .

2) S -> . id

3) S -> id .

4) S -> . V = E

5) S -> V . = E

6) S -> V = . E

7) S -> V = E .

8) V -> . id

9) V -> id .

10) E -> . V

11) E -> V .

12) E -> . n

13) E -> n .
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we can now group these together into a NFA. Here are the transitions

between the 14 states above. Note that dot before a terminal yeild a

transition on a terminal and a dot before a nonterminal leads to an

epsilon transition for each possible substitution for the nonterminal

as well as a substitution for on each completed nonterminal. Progress

through the NFA goes from start symbol to a "complete item".

0 -> 1 on S

2 -> 3 on id

4 -> 5 on V

5 -> 6 on =

6 -> 7 on E

8 -> 9 on id

10 -> 1 on 1 V

12 -> 1 on 3 n

0 -> 2 on \epsilon

0 -> 4 on \epsilon

4 -> 8 on \epsilon

6 -> 1 on 0 \epsilon

6 -> 1 on 2 \epsilon

10 -> 8 on \epsilon

We now convert the NFA to a DFA by starting with the

start symbol:

STATES TRANSITIONS

0) S’ -> . S 0->1 on S

0) S -> . id 0->2 on V

0) S -> .V = E 0->3 on id

0) V -> . id

1) S’ -> S .

2) S -> V . = E 2->4 on =

3) S -> id .

3) V -> id .

4) S -> V = . E 4->5 on E

4) E -> . V 4->3 on id

4) E -> . n 4->6 on n

4) V -> . id 4->7 on V

5) S -> V = E .

6) E -> n .
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7) E -> V .

We can now write the code for the parser.

1) for every noncomplete item (dot in the middle) we expect one

of the symbols following the dot to be the next token. That

is the lookahead that will tell us what state to go to next.

2) for every complete item (dot at the end) we expect to

simply pop off the matching tokens on the stack. Look at

the state and element from the lhs and goto that new state.

For example in state 5 above we will pop the three tokens V = E

from the stack and look at the revealed new-state on the top

of the stack. Then take the lhs of the production in state 5

which is S and the new-state and get the next state.

This works for most things above but something is funny with state 3.

We pop off the id giving us the new state but what is the lhs we use?!

Is it S or V?? We don’t know which reduce to use. This is a

reduce-reduce error. (Compare this with the dangling else which gives

us a shift-reduce.)

Let’s try a different approach. Let’s include the next token in

the state structure and see if that helps. It might because

we are including this from the beginning.

consider the grammar again:

0) S’-> S $ // augmented grammar with end-of-input token

1) S -> id

2) S -> V = E

3) V -> id

4) E -> V

5) E -> n

Now let’s create LR(1) items (see page 217).

LR(1) items are LR(0) items with a single lookahead token tag.

THis token will be the next token we scan in after the complete

pattern is matched. That is, for a production A -> .B the

LR(1) items are [A -> . B, z] where z is in the follow(A).

and guide the parse.

We tag each production depending on where the dot is.

1) If we have a production with a dot before an X

[a -> b . X c, z]

where X is any symbol then we preserve the lookahead token z
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[a -> b . X c, z] transitions to [a -> b X . c, z] on X

X can be a terminal or nonterminal.

2) If we have

[a -> b . X c, z]

where X is a nonterminal we also have an \epsilon transition

[a -> b . X c, z] transitions to [ X -> Y, z’ ]

for every z’ in the First(cz) that is the first set of

the string of token c concatenated to the token z. This

is First(c) if c can never be empty.

Note: for every

[a -> b . X , z] transitions to [ X -> Y, z ] exactly as a special case

of rule 2.

We can construct the LR(1) items given the above rules and

the firstOfList function we described in class:

0) S’ -> . S,$

1) S’ -> S .,$

2) S -> . id,$

3) S -> id .,$

4) S -> .V = E,$

5) S -> V . = E,$

6) S -> V = . E,$

7) S -> V = E .,$

8) V -> . id,$

9) V -> . id,=

10) V -> id .,=

11) V -> id .,$

12) E -> . V,$

13) E -> V .,$

14) E -> . n,$

15) E -> n .,$

the transitions lead us to this DFA (see page 223)

STATES TRANSITIONS

0) S’ -> . S,$ 0->1 on S

0) S -> . id,$ 0->2 on V

0) S -> .V = E,$ 0->3 on id

0) V -> . id,=
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1) S’ -> S .,$

2) S -> id .,$

2) V -> id .,=

3) S -> V . = E,$ 3->4 on =

4) S -> V = . E,$ 4->5 on E

4) E -> . V,$ 4->8 on id

4) E -> . n,$ 4->7 on n

4) V -> . id,$ 4->6 on V

5) S -> V = E .,$

6) E -> V .,$

7) E -> n .,$

8) V -> id .,$

Note that it is very clear what to do at every state and

when there is a reduce-reduce conflict from the SLR we

get a two choices of productions that are decided by the

lookahead char. So the LR parser saved the day.

Why this works is that in the case of reducing an id to an S the S

must be followed by a $ while a V must be followed by an =. These two

sets do not overlap. In an LR(1) parser a reduce-reduce conflict must

now look something more like the following in the same set:

k) S -> id .,$

k) S -> id .,=

k) V -> id .,*

k) V -> id .,=

When the lookahead is = we can’t decide between the two productions.

The important thing to see is that what can follow a V

fol(V) = {=, $}

and

fol{S} = {$}

overlap as you can see below:

Here are the S cases:

2) S -> . id,$

3) S -> id .,$

4) S -> .V = E,$
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5) S -> V . = E,$

6) S -> V = . E,$

7) S -> V = E .,$

Here are the V cases:

8) V -> . id,$

9) V -> . id,=

10) V -> id .,=

11) V -> id .,$

In an SLR grammar the reductions 3 and 10 occur in the same

node (node 2) and which reduction to use would be

dictated by the rule in the SLR algorithm:

"if state contains a complete items A ::= X., B::=Y., C::=Z. then

chose A if input \isin Follow(A), B if input \isin Follow(B), etc"

Follow(S) = {$}

Follow(V) = {=, $}

This is a reduce/reduce error since the follow sets are not disjoint.

In an LR(1) grammar we start with three different nodes in the NFA

[S -> id., $]

[V -> id., $]

[V -> id., =]

and in the DFA become two nodes. see page 223 for complete example:

node 2:

[S -> id., $]

[V -> id., =]

node 8:

[V -> id., $]

In node 2 the lookahead symbol tells us which reduction to use.

Let’s look at this from a different view. Where can

an id occur?

S -> id | V = E

V -> id

E -> V | n

it can occur in three places. A statement can be:
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id $

id = E $

V = id $

Look at figure 5.8:

id $ state 2 with lookahead $

id = E $ state 2 with lookahead =

V = id $ state 8

distinguishing between

id $

V = id $

used to be a problem since in an SLR grammar

state 4 used to go to state 2 on an id.

Now there is a new separate state 8 for id.

This is for processing the id at the end of

an assignment.

This would lump

[S -> id., $]

[V -> id., $]

[V -> id., =]

together and cause a confusion about what to do. An extra state

allows us to record that we are at the end of an assignment so you

must want to do V -> id and not S -> id.
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