
Biological Computing (CS515) Class Notes

Robert B. Heckendorn

Initiative for Bioinformatics and Evolutionary STudies (IBEST)

University of Idaho

Moscow, Idaho

April 19, 2015

2 c© Robert Heckendorn (2015)

Contents

1 Introductory Math 9

1.1 Basic Probability . 9

1.1.1 Mutually Exclusive Events . 9

1.1.2 Independent Events . 10

1.1.3 Bayesian Probabilities . 10

1.1.4 Maximum Likelihood . 13

1.2 Assumptions . 13

1.3 A Bit of Information Theory . 14

2 Dynamic Programming and Sequence Alignment 17

2.1 Number of Ways to Walk to Work . 17

2.1.1 Maximum Number of Cans . 18

2.1.2 Allowing Diagonal Streets . 20

2.2 Global Alignment (Needleman-Wunsch) . 21

2.3 Overlap Matching . 23

2.4 Local Alignment (Smith-Waterman Algorithm) . 23

2.5 Repeat Alignment . 24

2.6 Affine Gapping . 24

2.7 The Structure of Substitution Matrices . 26

2.8 Common Substitution Matrices for proteins . 30

2.8.1 PAM . 30

2.8.2 BLOSUM (BLOcks SUbstitution Matrix) . 30

2.9 Why Log Odds Ratio Might be Related to P (M |data) 31

2.9.1 Applying Bayesian Reasoning to Substitution Matrices 31

3

CONTENTS

2.10 Programs that do Sequence Alignment . 33

2.10.1 FASTA . 33

2.10.2 The BLAST Programs . 34

2.10.3 BLAST statistics . 36

2.10.4 The dotter Program . 37

2.10.5 SEG program . 37

3 Markov Models and Hidden Markov Models 39

3.1 The Monkey Typewriter Problem . 39

3.2 Markov Models . 41

3.3 The Hidden Markov Model . 44

3.3.1 The Loaded Dice Problem . 44

3.3.2 Probability of Seeing x and Having a State Sequence π 44

3.3.3 Most Likely Path (Viterbi Algorithm) . 45

3.3.4 Probability of Observed Sequence (Forward Algorithm) 45

3.3.5 Probability of Sequence x and πi = k (Backward Algorithm) 46

3.3.6 Most Probable State for xi . 47

3.3.7 Review of Matrices used . 47

3.3.8 Revisiting
∑
π

P (x, π) . 48

3.4 Predicting Region Classification . 49

3.5 Parameter Estimation . 50

3.5.1 ...if we know π . 50

3.5.2 ...if we don’t know π . 51

3.6 Mathematical Stability of Dynamic Programming . 52

4 Profile HMMs 55

4.1 Conscensus Modeling . 55

4.2 Global Matching with Profile HMM . 55

4.2.1 Linear Model . 55

4.2.2 Insertion Model . 56

4.2.3 Deletion Model . 56

4.3 Full Viterbi Equations . 56

4.4 Parameter Estimation . 57

4 c© Robert Heckendorn (2015)

CONTENTS

4.4.1 Pseudocounts . 58

4.4.2 Multinomials and Dirichlet . 58

4.4.3 Substitution Matrix Mixtures . 59

4.4.4 Estimation from Ancestor . 60

4.4.5 Model Construction . 61

5 Phylogenetics 63

5.1 Trees in General . 64

5.1.1 Newick Format . 65

5.1.2 Tree Space . 66

5.1.3 Tree Construction . 67

5.1.4 Comments on Construction and Mutation . 67

5.2 Edge Length: Distance Matrix Methods . 67

5.2.1 Least Squares Methods . 68

5.2.2 Cluster Methods . 68

5.3 Recursive Tree Evaluation Algorithms . 73

5.3.1 Parsimony . 73

5.4 Traditional Parsimony . 74

5.5 Bootstrapping . 75

5.5.1 Combining Trees . 75

5.5.2 Problems with P-values . 76

5.5.3 Robinson Foulds Distance Metric . 76

5.6 Evolutionary Models . 76

6 Multiple Sequence Alignment 79

6.1 Scoring Schemes . 79

6.2 Sum of Pairs Scoring . 80

6.3 Multiple Dimension Dynamic Programming . 80

6.3.1 Containing the Explosion . 80

6.3.2 Details of MSA . 81

6.4 A∗, Dijkstra’s Algorithm and Other Network/Tree Optimizations 81

6.5 Progressive Alignment . 82

6.5.1 Feng-Doolittle Progressive Alignment . 82

5 c© Robert Heckendorn (2015)

CONTENTS

6.5.2 Profile Alignments . 83

6.5.3 Example: CLUSTALW . 83

6.6 Iterative Alignment . 84

6.7 Multiple Alignment by HMM Profiles . 84

7 Probabilistic Phylogenetics 87

7.1 Maximum Likelihood . 87

7.1.1 Felsenstein’s Algorithm . 88

7.1.2 Ambiguities . 90

7.2 Bayesian . 90

7.2.1 Acceptance and Rejection Sampling . 91

7.2.2 Metropolis-Hastings Algorithm . 91

7.2.3 Some Practical Points about MCMC . 94

7.2.4 MCMC for trees . 94

7.2.5 Incorporating an Evolutionary Model . 95

7.2.6 Mr. Bayes, MCMC, and Bootstrapping . 95

8 Grammatical Analysis of Sequences 97

8.1 RNA Folding . 99

8.2 Stochastic Context Free Grammar . 99

8.2.1 Chomsky Normal Form (CNF) . 101

8.3 CYK Parsing . 101

9 Sequence Assembly 105

9.1 Shotgun Sequencing . 105

9.1.1 The Shortest Common Superstring Problem 105

9.1.2 Real World Shotgun Sequencing . 108

9.2 Other Techniques . 109

9.2.1 Other Approaches . 109

6 c© Robert Heckendorn (2015)

Introduction

These are some of the notes for Biological Computation class. Missing are various hand written
notes and slides. These notes are provided as a study and lecture aid. As all material produced
in the act of teaching at the University of Idaho, this material is copyrighted by the instructor
(Robert Heckendorn) and the University of Idaho who retains all intellectual rights of the material
for future publication or classes. I apologize for the lack of completeness, spelling errors, and casual
manner of these notes. I will correct this over time, but after all, they are just my class notes ,.

The material in these notes covers chapters from at least these three books and numerous
articles. The three books, all three of which I highly recommend, are:

• Biological Sequence Analysis by Durbin, Eddy, Krogh, and Mitchison, Cambridge Press 2001

• Inferring Phylogenies by Joseph Felsenstein, Sinauer 2004

• Introduction to Computational Biology by Michael S. Waterman, Chapman and Hall/CRC
2000

7

CONTENTS

8 c© Robert Heckendorn (2015)

Chapter 1

Introductory Math

1.1 Basic Probability

1.1.1 Mutually Exclusive Events

Consider mutually exclusive events A, B, C. The universe of all discrete events that could be
observed is U . Let P (A) is the probability of seeing A or observing an event of type A. Let P (B)
is the probability of seeing B or observing an event of type B. Any probability P is non-negative.
In fact:

P (i) ∈ [0, 1]∀ i ∈ U

The probability of seeing either A or B that are known to be mutually exclusive events is

P (A or B) = P (A) + P (B)

If the events A or B are not necessarily mutually exclusive then

P (A or B) = P (A) + P (B)− P (A,B)

Where P (A,B) denotes the joint probability, that is the probability of both A and B occurring.
Another way to think of this is the probability of something being both of type A and type B.
Note that by definition:

P (A,B) = P (B,A)

For example:

If P (A) is probability of a die roll being 1 and P (B) is the probability of a die roll being 3 then

P (A) + P (B)− P (A,B) =
1

6
+

1

6
− 0 =

2

6

If P (A) is probability of a die roll being less than 4 and P (B) is the probability of a die roll
being even, then

P (A) + P (B)− P (A,B) =
1

2
+

1

2
− 1

6
=

5

6

9

1.1. BASIC PROBABILITY

The sum of the probabilities of all events in U , if they are mutually exclusive, is 1.∑
i∈U

P (i) = 1

1.1.2 Independent Events

Consider events A, B where A and B are independent of each other. They are independent if
whether A has occurred or not does not change the probability of B occurring. The probability
that A on one observation and B on the next is denoted P (AB):

P (AB) = P (A)P (B) provided A and B are independent!

1.1.3 Bayesian Probabilities

Let P (A,B) denote the joint probability, that is the probability of both A and B occurring also
denoted (A ∩B).

NOTE: P (A,B) 6= P (AB). The first is the probability of the event being classified as both of
type A and type B. For our purposes, P (AB) is the probability of B following A as in an ordered
sequence.

Let P (A|B) denote the conditional probability, that is the probability of A occurring given
B has occurred. This is defined as:

P (A|B) =
P (A,B)

P (B)

Since

P (A|B) =
P (A,B)

P (B)
and P (B|A) =

P (B,A)

P (A)

we see that
P (A|B)P (B) = P (A,B) = P (B|A)P (A)

therefore
P (A|B)P (A)

P (B)
= P (B|A)

Bayesian probabilities (and statistics sort of) can be viewed as solving unknowns in a 2×2
matrix. Consider this example matrix of people with red or black hair and male or female sex.
Row and column sums are provided for convenience.

red hair black hair row sum

male 10 31 41

female 36 23 59

col sum 46 54 100

10 c© Robert Heckendorn (2015)

1.1. BASIC PROBABILITY

P (red) = 46/100

P (red,M) = 10/100

P (red|M) = 10/41

P (M |red) = 10/46

Let’s compute P (red,M) and P (M, red) (which is really the same thing).

P (red,M) = P (red|M) P (M)

10/100 = 10/41 41/100

P (M, red) = P (M |red) P (red)

10/100 = 10/46 46/100

therefore P (red,M) = P (M, red) = 10/100.

Example Problem: Now suppose I didn’t give you the matrix above but gave you these three
facts:

1. P (red|M) = 10/41

2. P (M) = 41/100

3. P (red) = 46/100

What is P (M |red)?

Answer:

P (red|M)P (M)/P (red) = (10/41)(41/100)/(46/100) = (10 ∗ 41 ∗ 100)/(41 ∗ 100 ∗ 46) = 10/46

BINGO! ... just as in the table.

The above table converted to probabilities looks like:

red hair black hair row sum

male P(M, red) P(M, black) P(M)

female P(F, red) P(F, black) P(F)

col sum P(red) P(black) 1.0

We know that the P (M, red) = P (M)P (red) if M and red are independent. Clearly that isn’t
true for our example data. In particular the values inside the matrix are not normally able to be
computed from the row and column sum information unless an assumption of independence in row
and column is made. This assumption is frequently made in bioinformatics to make the problem
solvable.

Here are the general rules we have created in playing with the example matrix:

11 c© Robert Heckendorn (2015)

1.1. BASIC PROBABILITY

P (A,B) = P (B,A) = P (B|A)P (A) = P (A|B)P (B)

or

P (A|B) =
P (B|A)P (A)

P (B)
=
P (A,B)

P (B)

This is called Bayes’ Theorem after Reverend Thomas Bayes (1702-1761).

The major point to see here is that if we make some assumptions about P (A) and P (B) or
even just their ratio, we can convert P (B|A) into P (A|B) This will allow us to convert between
P (data|model) and P (model|data) if we know the P (data) and P (model). In the following:

P (A|B) =
P (B|A)P (A)

P (B)

P (A) and P (B) are prior probabilities
P (B|A) is the sampling probability or likelihood
P (A|B) is the posterior probability
Put another way if P (A |B) is a function of A then we say “it is the probability of A”. If
P (A |B) is a function of B then we say “it is the likelihood of B”.

The second thing to see is that

P (A,B) 6= P (A|B)

unless P (B) = 1.

In terms of data D and parameters θ we might write:

P (θ|D) =
P (D|θ)P (θ)

P (D)
=
P (θ,D)

P (D)

Marginalizing probabilities. If the independent choices for A can be enumerated as Ai:

P (B) =
∑
i

P (B|Ai)P (Ai) =
∑
i

P (B,Ai)

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2)

= P (B,A1) + P (B,A2)

Marginalizing probabilities gives yet another useful way of looking at Bayes’ theorem.

P (Ak|B) =
P (B|Ak)P (Ak)∑
i P (B|Ai)P (Ai)

=
P (B,Ak)

P (B)

So if we are given an amino acid sequence X what is the probability it is an external protein
as opposed to an internal protein? That is, what is P (ext|X)? Consider an amino acid sequence
X = x1x2x3x4...xn. Let qinta be the probability of amino acid a being in an internal protein and

12 c© Robert Heckendorn (2015)

1.2. ASSUMPTIONS

qexta be the probability of amino acid a being in an external protein. P (int) is the probability that
a tested sequence is internal and P (ext) is the probability that a tested sequence is external.

p(ext|X) =
P (X|ext)P (ext)

P (X|int)P (int) + P (X|ext)P (ext)

Assume all loci are independent distributions.

p(ext|X) =
P (X|ext)P (ext)

P (X|int)P (int) + P (X|ext)P (ext)

P (X|ext) =
∏

i∈EXT
qexti

therefore

p(ext|X) =

(∏
i∈EXT q

ext
i

)
P (ext)(∏

i∈ INT q
int
i

)
P (int) +

(∏
i∈EXT q

ext
i

)
P (ext)

If you can estimate the priors P (ext) and P (int). For example if you assume they are all equal
you can cancel them and use the following to estimate p(ext|X):

p(ext|X) =

(∏
i∈EXT q

ext
i

)(∏
i∈ INT q

int
i

)
+
(∏

i∈EXT q
ext
i

)
1.1.4 Maximum Likelihood

zzz

1.2 Assumptions

We want something that is biologically reasonable given the model that we are using.

Let’s look at structure of proteins [SLIDE of Classes]

Let’s look at multiple sequence alignment [SLIDE of alignment] of proteins and see it is true

First let’s assume in a pair that prob of any character in the sequence is as if the character is
drawn from an fixed alphabet that is independent and identically distributed or i.i.d. This
means we can treat each column separately and identically.

13 c© Robert Heckendorn (2015)

1.3. A BIT OF INFORMATION THEORY

1.3 A Bit of Information Theory

More information is conveyed by things that are unexpected than expected, that is, information is
a measure of the level of surprise. For example: The statement “gravity is working today” contains
practically no information. If we ask a child, “Do you like ice cream?” and the child answers “yes”
then the answer did not convey as much information as the surprising answer “no”.

Let pi is the probability of symbol si in a data stream. If pi is small then 1/pi is large and 1/pi
can be thought of as the level of surprise.

The information content of symbol si, I(si), in a data stream is

I(si) = log2(1/pi) = − log2(pi) >= 0

Note that only when you are certain of the outcome is the information content zero. This is
what our intuition would say. Note also that information is a measure of a instance of a symbol in
a data stream.

If the base of the log is 2 then the answer is in bits of information (as in binary). In a sense,
this measure tells us how many bits of information are needed to encode the message. If the base
of the log is e (natural log) then the answer is in nats (I’m not kidding).

Back to the ice cream problem. If the probability of a child answering “no” is only .1 then the
information content of the “no” answer is:

log2(1/.1) = 3.3 bits

and for “yes”

log2(1/.9) = .15 bits

The term entropy applies to a set of symbols in an expected symbol stream or message.
Consider a set of symbols S with each symbol si having a probability of occurrence of pi. This
creates a distribution for S of P as vector of probabilities. The entropy of P is the expected
information content per symbol or:

E(I(s)) = H(P) = −
∑
i

pi log2(pi)

Entropy does not answer a question about a particular message only the encoding of the message
with a specific probability of each symbol occurring. If the log is base 2 as above then entropy
represents the expected number of bits needed to represent one character in the stream
of characters or message and so if you have k symbols in the message you can expect kH(P) bits
to represent the message on average.

Consider a fair coin. Compute the entropy of a stream of fair tosses.

14 c© Robert Heckendorn (2015)

1.3. A BIT OF INFORMATION THEORY

−(.5 log2(.5) + .5 log2(.5)) = 1 bit

So it should take 1 bit on average to represent whether it is a head or tail.

So a string of 1000 heads and tails with this probability distribution can be represented by 1000
bits on average. Without more information about the message this is the minimum description
length (MDL) of a message from the distribution described by the probabilities of occurrence of
the symbols in the set.

Now consider an unfair coin that returns 99 heads for every tail. You are on average much more
certain of the outcome. The tail is a surprise. The information content of a “head” in the data
stream is .0145 bits and the information content of the “tail” is 6.64 bits. The entropy is:

−(.99 log2(.99) + .01 log2(.01)) = −(.99(−.0145) + .01(−6.64)

= −((−.01435) + (−.0644))

= .081 bits

So it should take only .081 bit on average to represent whether it is a head or tail. So a string of
1000 heads and tails with this “unfair” probability distribution can be theoretically represented by
only 81 bits. The information content is less per toss.

The entropy of a random DNA sequence is 4 ∗ .25(− log2(1/4)) = 2 bits. But suppose there
were 90% A or T (45% of each) and 10% G or C (5% or each). That would give 1.47 bits.

The entropy of a set of n equally likely symbols is

n ∗ 1/n ∗ (− log2(1/n)) = log2(n)

Equal probabilities is the point of maximum unpredictability and hence maximum entropy for
the symbol set. If you don’t know the true distribution of the symbols then assuming an equal
distribution will produce the maximum expected MDL for a message.

The relative entropy of a message is a comparison of the the expected distribution P with
the actual observed distribution Q.

H(Q||P) =
∑
i

(qi log2(qi)− qi log2(pi)) =
∑
i

qi log2(qi/pi)

log2(qi/pi) > 0 if si was more likely in the true distribution than our expected distribution.
Note that often H(Q||P) 6= H(P ||Q). This is clearly what we are doing when we “design” a scoring
matrix.

If we change the problem to one of determining the amount of information you can infer from
P by observing Q then we can adapt relative entropy to this purpose. This is called mutual
information I(Q;P).

15 c© Robert Heckendorn (2015)

1.3. A BIT OF INFORMATION THEORY

I(Q;P) =
∑
i,j

Prob(i, j) log2

Prob(i, j)

qipj

where Prob(i, j) is the joint probability of seeing symbol i from Q and j from P .

16 c© Robert Heckendorn (2015)

Chapter 2

Dynamic Programming and Sequence
Alignment

2.1 Number of Ways to Walk to Work

bf Problem: When I was in grad school at the University of Arizona in Tucson, I used to live some
number of blocks north and west of the Computer Science Department. I take different routes to
work all the time. If the Computer Science Department was e blocks east and s blocks south, how
many ways could I walk to work?

Tucson map layout with North at the top and East to the right:

East −→
HOME 0 1 1 1 1

1 2 3 4 5

1 3 6 10 15

1 4 10 20 35

CS DEPT

This calculation can be written as this recursive function definition:

17

2.1. NUMBER OF WAYS TO WALK TO WORK

F (0, 0) = 0

F (0, s) = 1

F (e, 0) = 1

F (e, s) = F (e, s− 1) + F (e− 1, s)

where e is the number of blocks you go east and s is the number of blocks you go south. F (e, s) is
the number of ways you cat get from HOME to the intersection e blocks east and s blocks south.
Recursion makes the computation of F (e, s) easy. Just start computing from F (0, 0) and fill in the
table from upper left to lower right.

Problems where the results can be quickly computed from a problem of a smaller size in a
systematic way means this can be used to solve the problem quickly if you then build up from the
small problem to the intended one. This technique is called dynamic programming.

The total number of paths is given in closed form as:

F (e, s) =

(
s+ e

e

)
=

(
s+ e

s

)

This can be seen by considering that you always travel s + e blocks in going from HOME to the
intersection at (e, s). Of those exactly e of them are always spent going east. And all paths
consisting of s+ e blocks of travel with e of them going east take you to intersection (e, s).

How much work did we have do to find out the number of paths? O(s ∗ e) had had to be done
using dynamic programming even though the number of paths is fantastically larger.

2.1.1 Maximum Number of Cans

Many problems involving maximizing profit on a path of travel is solved by leveraging the idea of
recursion and using dynamic programming.

Problem: Let’s look at the problem of maximizing the number of cans collected while walking
to work. Let ce(e, s) be the number of cans you collect in the last block if you arrived at intersection
(e, s) going East. Let cs(e, s) be the number of cans you collect in the last block if you arrived
at intersection (e, s) going South. We want to pick the edges in our path so that the maximum
number of cans are picked up.

18 c© Robert Heckendorn (2015)

2.1. NUMBER OF WAYS TO WALK TO WORK

Number of Computation Number of

Blocks East Time Paths

1 1 2

2 4 6

3 9 20

4 16 70

5 25 252

6 36 924

7 49 3432

8 64 12870

9 81 48620

10 100 184756

11 121 705432

12 144 2704156

13 169 10400600

14 196 40116600

15 225 155117520

16 256 601080390

17 289 2333606220

18 324 9075135300

19 361 35345263800

20 400 137846528820

Table 2.1: The computation time using dynamic programming for going across a grid of blocks
where the number of blocks south is the same as the number of blacks east.

19 c© Robert Heckendorn (2015)

2.1. NUMBER OF WAYS TO WALK TO WORK

This can be expressed recursively as:

F (0, 0) = 0

F (0, s) = F (0, s− 1) + cs(0, s) // add the cans for the last block going south

F (e, 0) = F (e− 1, 0) + ce(e, 0) // add the cans for the last block going east

F (e, s) = max(F (e, s− 1) + cs(e, s), // select the cans that made the most profit

F (e− 1, s) + ce(e, s))

A very important question at this point is: How do we recover the path? What path to
take is made at each recursive step in the function, for example, the point where pick cs or ce in
the max function. If you picked cs as the maximum then that is route that gave you the number
you find at F (e, s). To find the path we work backwards from CS DEPT to HOME. At each point
in the grid we have either:

1. save which way gave us the maximum value

2. we recompute it and redecide as we go backwards through the matrix

The choice of which way may depend on the details of what is being requested of the algorithm
and how the algorithm is implemented for the particular application. When there get to be a lot of
complex options or a search of the resulting matrix based on paths is needed then saving it might
be the best choice. If it is relatively simple and space is an issue then recomputing is not hard.
Some questions the implementer might want to ask are: What if the args to max are equal? Can
there be multiple routes? How does the selection of which arg in the equal case affect the result?

2.1.2 Allowing Diagonal Streets

Suppose I am allowed to cut across the diagonally across the middle of the blocks from northwest
to southeast? How do we change the formula?

20 c© Robert Heckendorn (2015)

2.2. GLOBAL ALIGNMENT (NEEDLEMAN-WUNSCH)

F (0, 0) = 0

F (0, s) = F (0, s− 1) + cs(0, s)

F (e, 0) = F (e− 1, 0) + ce(e, 0)

F (e, s) = max(F (e, s− 1) + cs(e, s),

F (e− 1, s) + ce(e, s),

F (e− 1, s− 1) + cd(e, s)) // here is the diagonal case

2.2 Global Alignment (Needleman-Wunsch)

How do you match two protein or DNA sequences? What do we mean by match? What if the
strings are not equal what do we say? Can there be a degree of equal? That is a very complex
idea. We can create a simple approximate match based on editing a string.

Consider these two strings:

G T A C G G A T

G T G G A T G C

Matching two sequences is like taking a walk in which going east is moving through one string
and going south is moving through the other!

East: G T A C G G A T

South: G T G G A T G C

21 c© Robert Heckendorn (2015)

2.2. GLOBAL ALIGNMENT (NEEDLEMAN-WUNSCH)

East −→

G T A C G G A T

G

T

G

G

A

T

G

C

Going diagonally matches a character in both strings. Going south matches in the south string
but not in the east string. That is there is a gap in the east string. Going east matches in the east
string but not in the south string. It is important to notice that if the south string has k letters
then there a k + 1 eastward “streets”. Similarly for southward streets.

Here is the can collection function:

F (0, 0) = 0

F (0, s) = F (0, s− 1) + cs(0, s) // gap cost

F (e, 0) = F (e− 1, 0) + ce(e, 0) // gap cost

F (e, s) = max(F (e, s− 1) + cs(e, s), // gap cost

F (e− 1, s) + ce(e, s), // gap cost

F (e− 1, s− 1) + cd(e, s)) // subst cost

So if cs and ce are the cost of matching a gap and cd is the profit from making a match then
we try to maximize profit and we have a matching function! Here it is written out:

22 c© Robert Heckendorn (2015)

2.3. OVERLAP MATCHING

F (0, 0) = 0

F (0, s) = F (0, s− 1) + g

F (e, 0) = F (e− 1, 0) + g

F (e, s) = max(F (e, s− 1) + g,

F (e− 1, s) + g,

F (e− 1, s− 1) + subst(Ee, Ss))

Our model is now a system of g gap profit (a negative number) and a substitution profit based
on how reasonable it is to expect one character to be substituted for another: subst(Ee, Ss). The
last function is called a substitution matrix or scoring matrix. Let’s assume for the moment:

subst(x, y) =

{
2 if x = y

1 if x 6= y

g = −2

This is one kind of match. Something we want for biologists will be to associate these rewards
with the biology of a match. Let’s assume that we can make biologically relevant assignments of
reward.

2.3 Overlap Matching

In the overlapping match problem we only care about assigning a score for the best overlapping
part of two strings. We do that by not counting gaps at the beginning or end.

F (0, 0) = 0

F (0, s) = 0

F (e, 0) = 0

F (e, s) = max(F (e, s− 1) + g,

F (e− 1, s) + g,

F (e− 1, s− 1) + subst(Ee, Ss))

AND you get to choose the max in either final column or final row.

When might this kind of match be important?

2.4 Local Alignment (Smith-Waterman Algorithm)

In local alignment you want to find the match of strings that has the best subsection that overlaps.
Finding the best matched substring.

23 c© Robert Heckendorn (2015)

2.5. REPEAT ALIGNMENT

F (0, 0) = 0 // could start here

F (0, s) = 0 // could start here

F (e, 0) = 0 // could start here

F (e, s) = max(0, // could start here

F (e, s− 1) + g,

F (e− 1, s) + g,

F (e− 1, s− 1) + subst(Ee, Ss))

AND you get to find the largest score anywhere in the whole matrix.

2.5 Repeat Alignment

Search through east string for best combination of segments matching from the south string.

Assume a threshold of T , to make life easier. The threshold in the algorithm prefers to not have
match that is accidental, short, and irrelevant.

First row has special meaning. It stores the cost for starting a new matching segment of the
south string. The function definition for F (e, 0) shows where we save the value of the substring
that exceeds T . F (0, 0) = 0, of course. And F (e, s) shows how we work it back into the matching
process.

F (e, 0) = max(F (e− 1, 0),

F (e− 1, j)− T, for j = 1..maxS) // if substring match is > T then save it

F (e, s) = max(F (e, 0), // start a new subsequence

F (e, s− 1) + g,

F (e− 1, s) + g,

F (e− 1, s− 1) + subst(Ee, Ss))

2.6 Affine Gapping

F (0, 0) = 0

F (0, s) = γ(s)

F (e, 0) = γ(e)

F (e, s) = max(F (e, z) + γ(s− z), for z = 0..s− 1

F (z, s) + γ(e− z), for z = 0..e− 1

F (e− 1, s− 1) + subst(Ee, Ss))

with γ(x) = gext(x− 1) + ginit.

24 c© Robert Heckendorn (2015)

2.6. AFFINE GAPPING

The above is a O(n3) computation, but we can actually do better than that with a little thought.

Affine means a linear function of the form ax+ b. So affine gapping means a score that has
an initial cost for opening up a gap called ginit and an extension cost of gext per extra gap.

There are really three states you can be in when at an intersection. You can be matching the
characters from both strings, matching from the east string and gapping the south, or you can
match the south and gap the east.

case 1:

ATCGATCG

ATCGATCG

case 2:

ATCGATCG

ATCGA---

case 3:

ATCGA---

ATCGATCG

To convert this into a dynamic programming problem we will need to save the score from all
three state at each intersection. This makes three functions rather than the single one we called
F . Let M be the matching value (case 1), Ge be matching the east (case 2) and Gs matching the
south (case 3).

M(0, s) and M(e, 0) are undefined or −∞. Ge(0, s) is undefined or −∞. Gs(e, 0) is undefined
or −∞.

M(e, s) = max(M(e− 1, s− 1) + subst(Ee, Ss),

Ge(e− 1, s− 1) + subst(Ee, Ss),

Gs(e− 1, s− 1) + subst(Ee, Ss))

Ge(e, s) = max(M(e− 1, s) + ginit,

Ge(e− 1, s) + gext)

Gs(e, s) = max(M(e, s− 1) + ginit,

Gs(e, s− 1) + gext)

25 c© Robert Heckendorn (2015)

2.7. THE STRUCTURE OF SUBSTITUTION MATRICES

East −→

2.7 The Structure of Substitution Matrices

We want something that is biologically reasonable given the model that we are using. First, let’s
assume, in a pair we are matching, that probability of that pair is I.I.D. This means we can treat
each column as independent of its neighbors.

Margaret Dayhoff in early 70s did a study of ungapped protein streams and derived the PAM
(Percent Accepted Mutation) matrices as a biologically based substitution matrix for local align-
ments.

She asked what is the odds ratio for two symbols i and j being compared in two protein stings.

26 c© Robert Heckendorn (2015)

2.7. THE STRUCTURE OF SUBSTITUTION MATRICES

qi,j
pipj

=
observed (i, j) frequency

predicted (i, j) frequency by random chance

qi,j is sometimes called the target frequency. If qi,j/(pipj) > 1 then the pair (i, j) occurs
more often than by random chance. If qi,j/(pipj) < 1 then the pair (i, j) occurs less often than by
random chance.

Deviation of the odds ratio from 1 suggests nonrandom forces at work. Assume we have two
strings s and t.

Prob(s, t|R) =
∏
i

p(si)
∏
j

p(tj) =
∏
i

p(si)p(ti)

where R is a model of random selection from a distribution and so si and ti are independent.

Now let model M be at work that assumes there is a relation between si and ti because they
share a common ancestor. Continuing to assume we have a correct alignment with no gaps and
that the influence represented by model M applies to each column independently:

Prob(s, t|M) =
∏
i

q(si, ti)

Prob(p, q|M)

Prob(p, q|R)
=

∏
i q(si, ti)∏
i p(si)p(ti)

=
∏
i

q(si, ti)

p(si)p(ti)

Looking for an additive measure we can use log:

log

(
Prob(p, q|M)

Prob(p, q|R)

)
= log

(∏
i

q(si, ti)

p(si)p(ti)

)
=
∑
i

log

(
q(si, ti)

p(si)p(ti)

)

log(q(si, ti)/p(si)p(ti)) is log odds ratio sometimes abbreviated lod. The log is often log base
2 and hence the lod may be referred to in units of bits.

The choice of lod measure rather than just using the odds ratio has several computational
advantages. Addition is much faster than multiplication on a computer. Furthermore, by keeping
things in terms of log we are really looking at the exponent. Limit on the exponent in 32 bit IEEE
double precision arithmetic is only about 300 (in base 10) and in 64 bit double precision is about
4930 (base 10). This means in 64 bit arithmetic on a computer from 2010, the closest you can
get to 0 without being 0 is about 10−4930. It won’t take long doing the probability calculations
associated with DNA and protein to exceed the limited available precision for exponents. But if we
use the mantissa as the exponent by working with the logs of the numbers, things will run faster
and we can preserve the precision of the numbers without overflow!

Let’s take a look at some examples:

27 c© Robert Heckendorn (2015)

2.7. THE STRUCTURE OF SUBSTITUTION MATRICES

• If pa = .1 and pb = .01 then papb = .001 but if we observe .002 then odds ratio is 2. The lod
is 1 in base 2.

• If pa = .1 and pb = .01 then papb = .001 but if we observe .0005 then odds ratio is .5

So what does log odds ratio give us? Let’s look at a real sample substitution matrix or
scoring matrix.

Figure 2.1: The BLOSUM62 matrix.

Note they are integers. Integers are faster and more compact than floating point numbers in
computers. If we just truncated then we would lose too much precision (detail) so we first scale by
a constant c:

Si,j = Trunc[c ∗ log(qi,j/pipj)]→ integer

Si,j is often called the raw score not the same as a lod score. The raw score is just a compu-
tationally efficient approximation for the lod score. Is there a way to recover the target frequencies
from the raw score? Let’s reform the problem to that of finding the more commonly used scaling
constant λ. λ is a realvalued approximation of the effect of c and truncation in the previous
formula. The relationship is:

28 c© Robert Heckendorn (2015)

2.7. THE STRUCTURE OF SUBSTITUTION MATRICES

λSi,j = log(qi,j/pipj)

with the constraint that
∑

i,j qi,j = 1, since the target frequencies are really probabilities. λ is
called the scaling constant for the substitution matrix and λSi,j is called the normalized score.

Raising exponentiating both sides of the previous equation we get

qi,j = pipje
λSi,j

solved for lambda so that
∑

i,j qi,j = 1 Which is the same as:∑
i,j

pipje
λSi,j = 1

In fact if you give me a matrix S and observed freq pk then I can easily apply numerical methods
to approximate λ.

Example Problem: How do we compute the percentage identical of a substitution matrix?
Percentage identical is the average number of base pairs that are equal.

Answer:

∑
i

qi,i =
∑
i

p2
i e
λSi,i

We’ll see λ is important in computing the expected number of matches in a protein database
search later. λ is also a value that appears on many BLAST reports.

Once we have computed our estimate of qi,j given S, pi, pj , and λ we can compute the relative
entropy for a substitution matrix based on the idea of relative entropy of the substitution matrix
vs. a hypothetical random substitution matrix as suggested by Altschule in 1991:

H(S) = −
∑
i,j

qi,j log(qi,j/pipj)

which is computed using λ:

H(S) = −
∑
i,j

qi,jλSi,j

H(S) is clearly 0 if the observed sequences are random. H(S) is the average number of bits of
information per position in an alignment relative to a random string.

Another statistic about the matrix is the expected score:

E(S) =
∑
i,j

pipjSi,j

29 c© Robert Heckendorn (2015)

2.8. COMMON SUBSTITUTION MATRICES FOR PROTEINS

2.8 Common Substitution Matrices for proteins

2.8.1 PAM

How did Dayhof get PAM?

• selected reliable seq with no more than 15% differences

• align seq with no gaps

• constructed phylogenetic trees (using parsimony)

• looked at substitution freq as above

• and created PAM1

PAM1 is designed to represent a substitution matrix in the case where there is 1% difference
between a pair of protein sequences. Repeatedly multiplying PAM1 matrices k times gives PAMk.
That is

PAMk = PAM1k

PAM250 has 250% substitutions. That is each residue pair gets a substitution 2.5 times on
average. Note that the higher the number following PAM the less the pair match, the more
substitutions, and the higher the entropy of the matrix.

Problems with Dayhof approach:

• PAM uses short term substitutions to extrapolate long term substitutions by multiplying
PAM1 together. This model may not be biologically valid.

• Errors in calculations can accumulate.

Most people use BLOSUM matrices these days.

2.8.2 BLOSUM (BLOcks SUbstitution Matrix)

In the 90’s we had much more protein data so we could generate better substitution matrices. What
was done to create BLOSUM matrices?

• Blocks of multiply aligned gapless proteins organized by percent identity.

BLOSUM percentage identity so BLOSUM62 is 62% identical and BLOSUM200 doesn’t exist.

More disorganized (higher entropy) as BLOSUM number goes down or PAM number goes up.

30 c© Robert Heckendorn (2015)

2.9. WHY LOG ODDS RATIO MIGHT BE RELATED TO P (M |DATA)

2.9 Why Log Odds Ratio Might be Related to P (M |data)

substitution matrix → raw score (punish and reward)

2.9.1 Applying Bayesian Reasoning to Substitution Matrices

Here is our problem: assume we are looking at a singly aligned pair of bases or residues. Let’s
assume we can use the comparison of just one residue with another as a model for an arbitrarily
long string of ungapped identically independent residues. Given residues x and y what we want is

P (M |x, y)

We are given two models of what might be happening: M=match R=random. That means our
observations are either:

P (x, y|M) and p(x, y|R)

So we should be able to use Bayes Rule here

P (M |x, y) =
P (x, y|M)P (M)

P (x, y)
=
P (x, y,M)

P (x, y)

Assume that either we have M or we have R then by marginalization:

P (x, y) = P (x, y|M)P (M) + P (x, y|R)P (R)

P (M |x, y) =
P (x, y|M)P (M)

P (x, y|M)P (M) + P (x, y|R)P (R)

divide through top and bottom by P (x, y|R)P (R)

P (M |x, y) =

P (x,y|M)P (M)
P (x,y|R)P (R)

P (x,y|M)P (M)
P (x,y|R)P (R) + P (x,y|R)P (R)

P (x,y|R)P (R)

note the recurrence of P (x,y|M)P (M)
P (x,y|R)P (R) :

Let S′ = log(P (x,y|M)P (M)
P (x,y|R)P (R)) then

S′ = log(P (x, y|M)/P (x, y|R)) + log(P (M)/P (R))

likelihood ratio priors

But wait! Isn’t log(P (x, y|M)/P (x, y|R)) really the log odds ratio that we were computing with
log qi,j/pipj? And isn’t this approximated with the λSi,j?!

31 c© Robert Heckendorn (2015)

2.9. WHY LOG ODDS RATIO MIGHT BE RELATED TO P (M |DATA)

This is what we compute. If we now take e to the S′ we find:

eS
′

=
P (x, y|M)P (M)

P (x, y|R)P (R)

therefore

P (M |x, y) =
eS
′

(1 + eS′)

A sigmoid function is a function:

f(x) =
ex

1 + ex

This is a sigmoid function converting lod represented as S′ using the sigmoid function. This
converts: [−∞,+∞] → [0, 1]. The only problem with this grand plan is that what we compute is
not

S′ = log(P (x, y|M)/P (x, y|R)) + log(P (M)/P (R))

but rather we compute the raw score

S′ = Sx,y

We now will use λ and the sigmoid function to give meaning to the S′ we do compute, even
though we may not actually apply the sigmoid to our computed S′.

Let’s return to our problem of estimating

S′ = log(P (x, y|M)/P (x, y|R)) + log(P (M)/P (R))

using the substitution matrix S. From our understanding of λ a first approximation would be

S′ = λSx,y + log(P (M)/P (R))

What remains is what do we do about the priors log(P (M)/P (R))?

Normally a good guess is P (M)/P (R) = 1 or log(P (M)/P (R)) = 0 But, is the question we are
asking is what are the odds of a single attempted match being a match? Consider searching through
a large number of sequences in a database for a match. As the size of the database increases the
chance of a match my accident increases linearly with the size of the database (assuming unrelated
sequences). If we want a fixed number of false positives then we must set log(P (M)/P (R)) =
log(1/N) where N is the size of the database. Remember that this assumption depends on unrelated
sequences in the database. The bottom line is it should reflect the anticipated number of matches.

32 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

2.10 Programs that do Sequence Alignment

Smith-Waterman (local alignment) finds the best. It is the standard by which all alignment algo-
rithms are compared. But is that what we really want? Maybe we want the statistically significant
matches. Also, we probably want to use less space and to run a faster search without loss of
sensitivity to difficult alignments. Our goal now is to find using local alignment High-scoring
Segment Pairs HSPs given a query sequence.

BLAST programs are changing and improving. These are some techniques. Not all BLAST
programs use the same algorithms even if they have the same names. There are probably better
ways to do this. Your mileage may vary.

2.10.1 FASTA

This FASTA format description is taken from a page on the NCBI website of the same name.

A sequence in FASTA format begins with a single-line description, followed by lines of sequence
data. The description line is distinguished from the sequence data by a greater-than (“>”) symbol
in the first column. It is recommended that all lines of text be shorter than 80 characters in length.
Note that no comment lines beginning with semicolons are allowed in the NCBI format.
An example sequence in FASTA format is:

>gi|532319|pir|TVFV2E|TVFV2E envelope protein

ELRLRYCAPAGFALLKCNDADYDGFKTNCSNVSVVHCTNLMNTTVTTGLLLNGSYSENRT

QIWQKHRTSNDSALILLNKHYNLTVTCKRPGNKTVLPVTIMAGLVFHSQKYNLRLRQAWC

HFPSNWKGAWKEVKEEIVNLPKERYRGTNDPKRIFFQRQWGDPETANLWFNCHGEFFYCK

MDWFLNYLNNLTVDADHNECKNTSGTKSGNKRAPGPCVQRTYVACHIRSVIIWLETISKK

TYAPPREGHLECTSTVTGMTVELNYIPKNRTNVTLSPQIESIWAAELDRYKLVEITPIGF

APTEVRRYTGGHERQKRVPFVXXXXXXXXXXXXXXXXXXXXXXVQSQHLLAGILQQQKNL

LAAVEAQQQMLKLTIWGVK

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and nucleic
acid codes, with these exceptions: lower-case letters are accepted and are mapped into upper-case;
a single hyphen or dash can be used to represent a gap of indeterminate length; and in amino acid
sequences, U and * are acceptable letters (see below). Before submitting a request, any numerical
digits in the query sequence should either be removed or replaced by appropriate letter codes (e.g.,
N for unknown nucleic acid residue or X for unknown amino acid residue).

The nucleic acid codes supported are:

A --> adenosine M --> A C (amino)

C --> cytidine S --> G C (strong)

G --> guanine W --> A T (weak)

T --> thymidine B --> G T C

33 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

U --> uridine D --> G A T

R --> G A (purine) H --> A C T

Y --> T C (pyrimidine) V --> G C A

K --> G T (keto) N --> A G C T (any)

- gap of indeterminate length

For those programs that use amino acid query sequences (BLASTP and TBLASTN), the ac-
cepted amino acid codes are:

A alanine P proline

B aspartate or asparagine Q glutamine

C cystine R arginine

D aspartate S serine

E glutamate T threonine

F phenylalanine U selenocysteine

G glycine V valine

H histidine W tryptophan

I isoleucine Y tyrosine

K lysine Z glutamate or glutamine

L leucine X any

M methionine * translation stop

N asparagine - gap of indeterminate length

2.10.2 The BLAST Programs

Basic Local Alignment Search Tool (BLAST)

Name Query Database Uses

BLASTP Protein Protein good for finding distant relationships

BLASTN Nucleotide Nucleotide tuned for high scoring close relationships

BLASTX T(Nucleotide) Protein useful for a first pass look at new DNA and ESTs (cDNA)

TBLASTN Protein T(Nucleotide) finding unannotated coding regions in database

TBLASTX T(Nucleotide) T(Nucleotide) useful for EST analysis, computationally expensive

BLAST proceeds by:
SEEDING → EXTENSION → EVALUATION

A word is a w-mer from a sequence.

Step 1: Ignore much of the search space by seeding: Find words that score at least T relative
to a word in the query sequence. This is called a word hit. We will only consider sequences that
contain word hits.

As T increases the number of word hits goes down but the chance of missing something goes
up. What does T really say about HSPs? It is a speed/sensitivity trade-off.

34 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

Word size W .

In order for this to work effectively the dictionary of W -mers must be computed once. Then as
many queries can be made as you like at little cost.

Step 2: (two hit filter)

Consider only sequences which have two word hits on a diagonal within distance D of one
another. Sorting hits by difference of coordinates picks diagonals so you can search.

NCBI versions: BLASTN uses identical words and no T . W ≥ 7. No two hit filter. BLASTP
uses W = 2, 3 WU versions: W can have any value for any program. If W > 5 then T is not used.

Step 3: (low complexity filtering) Look at this later.

Step 4: (banded alignment)

bandwidth

Step 5: (ungapped extension)

Example: +1 match −1 mismatch X = 5 which is a dropoff limit

The quick brown fox jumped over the lazy dogs back

The quiet brown cat purred when she saw him

123 45654 56789 876 565456

000 00012 10000 123 434543

... ..cutoff | xxx xxxxxx

The end of extension occurs when the difference between the maximum and the current score
is X or less, which happens at the second “r” in purred. You keep everything up to the current
max. Do this in both directions. In the above case what happens when X = 2? X = 3? X = 666?

Step 6: (ungapped threshold filter or significance evaluation)

We now test against the expected number of matches and keep the matches that are statistically
significant. Those are called HSPs. or high scoring pairs.

Step 7: (evaluation and gapped extension)

Assembly of ungapped HSPs from consistent subHSPs. consistent subHSPs are HSP that
continue from one to the next by proceeding down and to the right in the dynamic programming
matrix without overlapping. A gapped dropoff limit is used to find the cutoff for assembling
ungapped subHSPs

Step 8: (final threshold filter)

The total score must be better than this to make the final cut.

35 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

2.10.3 BLAST statistics

As we all know if we define a distribution based on the sum of samples:∑
(x1, x2, . . . , xN) = MN

where the xi are drawn from independent random populations then MN is normally distributed.
What if we have

max(x1, x2, . . . , xN) = MN

Then MN is distributed with the extreme value distribution (EVD) The expected number of
matches

E(MN < x) ≈ e−KNeλ(x−µ)

Consider a local search as comparing an m length string against an n length string. Then the
dynamic programming algorithm will look at nm potential starting points for a sum of scores to find
the maximal score. This lead Karlin-Altschul (ref to follow) to use the extreme value distribution
above in the context of a BLAST search. To complete the analogy with the EVD case we assume
that a BLAST search is comparing the m character query string with all the strings in the database
concatenated together to create an n length string. The conclusion is called the Karlin-Altschul
Statistic

E(S) = Knme−λS

where: E(S) is the expected number of gapless matches with a raw score greater than S and a
scaling constant λ for that S. m and n are the size of the query string and the database in symbols
respectively. And K is a constant that measures the relative independence of the scores in the
dynamic programming matrix (insert hand waving here).

Now we can consider the “expected number of gapless matches with a raw score greater than
S” to be an event in a Poisson process. (Why?) Then we see that probability by chance of having
a score higher than the value S we found is

P (x > S) = 1− e−E(S)

This assumes:

1. that i.i.d. sequences

2. the sequences are effectively infinite in length

3. that average value of the substitution matrix is negative but that positive alignment scores
are possible

If the sequences are short, that is m or n are short then we need to compensate for length. As
dynamic programming approaches the end of a string in the matching process a good match may
be cut short by the end of the string. This is called edge effects. This means that potentially

36 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

good starting points in the dynamic programming matrix will be cut off, but they were allowed
for in the count of nm possible beginning points of traceback paths in the dynamic programming
matrix. So some algorithms reduce the values of n and m by the expected length of a match. Some
chose this value to be proportional to log(n).

E(S) = K(n− avgMatch)(m− avgMatch)e−λS

One more statistic. The query coverage is how long piece of the sequence is covered by the
one found. It is the percentage of the query sequence that was aligned in the final local alignment.

2.10.4 The dotter Program

One way to visualize alignments between two strings, x and y, is to use the dotter program.
Imagine a rectangular field of pixels where the pixel at location (i, j) is indexed where i is the ith

character in the first string and j is the jth character in the second string. For all (i, j) : xi = xj
then place a dot at pixel (i, j). Visually, diagonals form where a series of contiguous matches occur.

Dotter can be used to visually locate repeated matches between subsequences of two strings.

Dotter is also useful in visually locating areas called low complexity regions LCRs. These
are areas with low information content. For example a significant region that might be composed
of nothing but aminio acids G, Y, and A. This causes a square smudge on the dotter picture. See
images in lecture slides.

2.10.5 SEG program

The SEG program is used to look for LCRs. SEG uses a moving window and computes LCR in
two passes.

In phase 1 compositional complexity is measured for a window of length L and alphabet of size
N as:

K1 =
1

L
logN

L!

ΠN
i=1ni!

where ni is the number of occurrences of the ith symbol in the window. Note that 0 ≤ K1 ≤ 1.
This represents the number of possible substrings of length L with the given set of ni.

A second “more efficient” measure to compute is used which is based on the information content:

K2 = −
N∑
i=1

ni
L

log2

(
ni
L

)
The window is moved along one symbol at a time measuring the value of K2. Overlapping

37 c© Robert Heckendorn (2015)

2.10. PROGRAMS THAT DO SEQUENCE ALIGNMENT

windows where K2 ≤ K̂2 are merged to form potential LCRs. potential LCRs are merged if the

windows between have complexity K2 ≤
̂̂
K2 are merged to form larger LCRs where

̂̂
K > K̂.

In the second phase each LCR is reduced to the subsequence which minimizes

P0 =
1

NL

L!

ΠN
i=1ni!

N !

ΠL
i=1ri!

where rk is the count of the number to times k occurs in the vector of ni is found by exhaustive
search.

38 c© Robert Heckendorn (2015)

Chapter 3

Markov Models and Hidden Markov
Models

3.1 The Monkey Typewriter Problem

ThermusThermophilus.out

AA 0.030

AC 0.040

AG 0.067

AT 0.016

CA 0.046

CC 0.152

CG 0.084

CT 0.067

GA 0.062

GC 0.095

GG 0.149

GT 0.040

TA 0.015

TC 0.063

TG 0.045

TT 0.028

gcContent: 0.695

Table of adjacent nucleotides.

39

3.1. THE MONKEY TYPEWRITER PROBLEM

The Raven

by Edgar Allen Poe

Once upon a midnight dreary, while I pondered, weak and weary,

Over many a quaint and curious volume of forgotten lore,

While I nodded, nearly napping, suddenly there came a tapping,

As of some one gently rapping, rapping at my chamber door.

"’Tis some visitor," I muttered, "tapping at my chamber door-

Only this, and nothing more."

Ah, distinctly I remember it was in the bleak December,

And each separate dying ember wrought its ghost upon the floor.

Eagerly I wished the morrow;- vainly I had sought to borrow

From my books surcease of sorrow- sorrow for the lost Lenore-

For the rare and radiant maiden whom the angels name Lenore-

Nameless here for evermore.

==============================+==============================

theRaven1.txt

ihrie n rrrelahenaem la rnmdit iew dofiaatduutes-rrdusntl ogawnibn eriw;h n

rti"ptnaosiboh;tpagr-g h awlpt p svtogeb gtiadaflhcerdee" visr wmh

reiorh!o.vmfsli mth"o,ol’llewaiere lt baslr-rit mm c,ors

==============================+==============================

theRaven2.txt

teraththence bere thaire thatapith modathermomy ebeng berumulevephean, "g

meave-nof funner! ncon’erinco nt ndilishet g s s hor-tle hearcid "lin,

sthifrk nbyoororgllotifeves s theveabeeveghapate lotho

==============================+==============================

theRaven3.txt

t but and curplon theashe i scul have re; hesto teme wing beand thy

bermonevere. neventh any hut, untrave saidess taphentor daunt derechamilency

bled nep a shin thiscorrophe th sudden getch, disird thee

==============================+==============================

40 c© Robert Heckendorn (2015)

3.2. MARKOV MODELS

theRaven4.txt

at there floor. "thought’s perciful his dreams nappy me, angels help again if

bird, "’tis dreams name wondering, stor, with sent of pall my dared and soul

front is thy god word or that wand he streaming

==============================+==============================

theRaven5.txt

ntly you came as a tapping, still leaven stillness ungainly word, "thought

tossed this kind nothing than muttered, "thy fowl whose fiery expresent this

hope thy beak and and curious bird or we both ther t

==============================+==============================

theRaven6.txt

i implore-is there balm in guessing, stillness gave no craven, "nevermore.

deep into smiling, and weary, over many a quaint and nothing more that

melancholy burden bore-tell me with mien of lordly nappi

3.2 Markov Models

Last time we assumed that the strings we were matching were i.i.d. We know there are complicated
patterns in DNA/proteins this requires that we be able to identify and model variations from one
base/residue to the next in the sequence. Markov models will help us do that.

A Markov model is a set of states S and a matrix of probabilities P where pi,j is the probability
of going from state i to j. Notice that the state transition probability is dependent only on i
and j, where you are and where you are going, and not on any history of how you got to i. Clearly:∑

j

pi,j = 1

but not necessarily: ∑
i

pi,j = 1

As can be seen in the first example below.

A Markov model can be thought of as a set of nodes connected by probability arcs. Consider
this example of a model of who buys what cereal (Wheaties or Count Chocula):

41 c© Robert Heckendorn (2015)

3.2. MARKOV MODELS

It can be modeled as this modeled as this matrix:

P =

[
.8 .2

.3 .7

]

If we think the initial purchasers of the ceral are .2 for Wheaties and .8 for Count Chocula we
can represent these initial conditions as a row vector:

π =
[
.2 .8

]
Now multiplying πP gives the projected distribution after one move through the network. By
repetition of that process πPN gives us the projected distribution after N moves through the
network. PN are the multistep transition probabilities for N steps. So

π(N) = πPN

where π(N) is the state probabilities at step N with π(0) being the initial state probabilities.

P 1 =

[
0.8 0.2

0.3 0.7

]

P 2 =

[
0.7 0.3

0.45 0.55

]

P 3 =

[
0.65 0.35

0.525 0.475

]

P 4 =

[
0.625 0.375

0.5625 0.4375

]

P 5 =

[
0.6125 0.3875

0.58125 0.41875

]
...

P ∞ =

[
.6 .4

.6 .4

]
P ∞ is the limiting transition probability. Note that initial distribution is irrelevant in this

case. That is, it increasingly forgets the initial condition. This is true of most but not all MMs.

The probability of seeing a given path of states x of length L under the Markov model P is:

Prob(x |P) = Prob(xL |xL−1)Prob(xL−1 |xL−2)...P rob(x1)

= Prob(x1)
∏L
i=2 Prob(xi |xi−1)

= Prob(x1)
∏L
i=2 pxi−1,xi

42 c© Robert Heckendorn (2015)

3.2. MARKOV MODELS

and
logProb(x |P) = log

(
Prob(x1)

∏L
i=2 Prob(xi |xi−1)

)
= log(Prob(x1)) +

∑L
i=2 log(pxi−1,xi)

Now lets apply this to the problem in Chapt 3. We will look for CpG islands. These are regions
on DNA where Cs and Gs occur much more frequently. Let’s see if we can identify those regions.

Since Markov Models only need to know the probabilities of a transition from what state they
are in to any next state we need only compute that information from examining a set of training
data. In our case we have two sets. the CpG islands and the nonCpG islands. This gives us two
matrices P + for inside the island and P − for outside the island.

P + =

.180 .274 .426 .120

.171 .368 .274 .188

.161 .339 .375 .125

.079 .355 .384 .182

 P − =

.300 .205 .285 .210

.322 .298 .078 .302

.248 .246 .298 .208

.177 .239 .292 .292

Note the concentration of higher values in the center for C and G mixes in the P + over the

P −.

So let’s look at the log odds ratio for a given string x:

S(x) = log

(
Prob(x |P +)

Prob(x |P −)

)
= log

(
Prob(x1 |P+)

∏L
i=2 p

+
xi−1,xi

Prob(x1 |P−)
∏L
i=2 p

−
xi−1,xi

)
= log

(
Prob(x1 |P+)

Prob(x1 |P−)

)
+

L∑
i=2

log

(
p+
xi−1,xi

p−xi−1,xi

)

If you assume Prob(x1 |P+)/Prob(x1 |P−) ≈ 1 then you can get a score from:

S(x) = log

(
Prob(x |P +)

Prob(x |P −)

)
≈

L∑
i=2

log

(
p+
xi−1,xi

p−xi−1,xi

)

This gives us a new kind of scoring matrix β where each entry is the log2 of the ratio of the two
models we want to test.

βi,j = log

(
p+
xi,xj

p−xi,xj

)

β =

−0.734 0.419 0.580 −0.807

−0.913 0.304 1.813 −0.684

−0.623 0.463 0.332 −0.735

−1.164 0.571 0.395 −0.682

NOTE: The scoring is not performed between two corresponding base/residues in two sequences

but rather between two adjacent base/residues in the same sequence.

43 c© Robert Heckendorn (2015)

3.3. THE HIDDEN MARKOV MODEL

We could now use a moving window to repeatedly ask the question: “is this string in the window
a CpG island or not?”. Seems very ad hoc and awkward. We must propose millions of strings as
potential strings in an island. I think this is the wrong question to ask. So let’s build a model that
allows for modeling being in either region as we move through the string. It should identify the
CpG islands as we come across them. I am envisioning a Markov like machine that will have two
parts as part of the state machine, one for “on the island” and one for “off the island”.

To do this we will need a new more powerful model called a Hidden Markov Model.

3.3 The Hidden Markov Model

A Hidden Markov Model (HMM) is a set of states S and a matrix of transition probabilities P
where pi,j is the probability of going from state i to j or P (i | j), just like a MM. (In the remaining
sections of this document P will be used to represent probability.) HMM are models that we aren’t
allowed to view the actual states but rather only get a view of them via emissions probabilities.
ei(j) is the probability of observing output j given being in state i. In an HMM it is possible
to observe an exponentially large number of sequences x for a given path π through the states.
For example each possible state in S might have two symbols that could be emitted that have
nonzero probabilities. Then a path of π of L states could have 2L potential sequences x. Also
given a sequence x there could be many paths that generate the same sequence of symbols. The
assumption with HMM is that the observed sequence x is seen but the path through the states π
is unknown.

3.3.1 The Loaded Dice Problem

What it is. Note: expand

The HMM generalizes the idea that each condition a system is in has a possibly unique distri-
bution of possible observations.

3.3.2 Probability of Seeing x and Having a State Sequence π

What is the probability of seeing x and having state sequence π? That is:

P (x, π) = P (x |π)P (π)

which can be computed from:

P (x |π) = eπL(xL)eπL−1(xL−1) . . . eπ1(x1)

P (π) = P (πL |πL−1)P (πL−1 |πL−2) . . . P (π1)

44 c© Robert Heckendorn (2015)

3.3. THE HIDDEN MARKOV MODEL

therefore
P (x, π) = eπ1(x1)P (π1)eπ2(x2)P (π2 |π1) . . . eπL(xL)P (πL |πL−1)

= eπ1(x1)P (π1)

L∏
i=2

eπi(xi)P (πi |πi−1)

If you know both x and π then P (x, π) can be computed.

3.3.3 Most Likely Path (Viterbi Algorithm)

We’d like to know:
argmax

π
P (x, π)

This can be found recursively using dynamic programming. Consider that we don’t know what
state we have at position i in the sequence with symbol xi emitted. We will build a matrix V out
of vk(i) where k is the hidden state of the Markov model and i is the position in the sequence.

Let vk(i) = maxπ1,...,πi−1,πi=k P (x1, x2, . . . xi|π1, . . . , πi−1, πi = k) be the probability
of seeing the sequence up to xi given that the most likely path was taken to arrive at
state k for observed sequence x1, x2, . . . xi−1.

Then

vk(i) = ek(xi) max
z
P (k | z)vz(i− 1), i > 1 and vk(1) = ek(x1)

The transition probabilities between states, P (k | z), are known from the HMM. The emission
probabilities, ek(xi), are also known from the HMM.

Now argmaxk vk(L) is the most probable final state. vk(i) forms a dynamic programming matrix
that is |S | ×L in size indexed by k and i. Traceback can occur by keeping track of where the max
at each point came from and starting with the final state and working backwards. This allows us
to use the matrix of vk(i) to compute the path, π, that got us the max or argmaxπ P (x, π)

In the book, we see in the Case of the Dishonest Casino, Part 2, an examination of the matrix
vk(i) gives a estimate of the most probable state, πi for any xi and this tells us whether we believe,
given our observation of the sequence x, that xi was generated by a fair or loaded die.

3.3.4 Probability of Observed Sequence (Forward Algorithm)

We want:
P (x) =

∑
π

P (x, π)

Again we can answer this with dynamic programming. Where before we wanted the path that is
maximum now we replace the idea of taking the max at each step through the matrix with the
summing at each step.

45 c© Robert Heckendorn (2015)

3.3. THE HIDDEN MARKOV MODEL

Let fk(i) = P (x1, x2, . . . xi, πi = k), that is, the probability of seeing the sequence
up through position i and being in state k for position i.

Unlike vk(i), the forward adds in all possible paths through the states that yield x. In the end we
answer our original question with:

P (x) =
∑
k

fk(L)

where:

fk(i) = ek(xi)
∑
z

P (k | z)fz(i− 1), i > 1 and fk(1) = ek(x1)

fk(i) now forms a dynamic programming matrix that is |S | ×L and gives the running probability
of xi in the sequence x being generated by state k.

Remember that although it can save computer memory to compute this matrix using only the
last column computed and discarding the rest, the whole matrix may be useful in other computa-
tions as we will see.

3.3.5 Probability of Sequence x and πi = k (Backward Algorithm)

This time what we want is P (x, πi = k), which is the probability of seeing all of x given πi = k.
We find

P (x, πi = k) = P (x1, x2, . . . xi, πi = k)P (xi+1, xi+2, . . . xL |x1, x2, . . . xi, πi = k)

= P (x1, x2, . . . xi, πi = k)P (xi+1, xi+2, . . . xL |πi = k)

= fk(i)P (xi+1, xi+2, . . . xL |πi = k)

This is like having the dynamic programming bottleneck at position i in state k. To see this, let
me expand on what was done. What we are reallying to do is:

∑
π,πi=k

P (x) =
∑
πL

eπL(xL)P (πL |πL−1) . . . ek(xi)P (k |πi−1) · · ·
∑
π1

eπ1(x1)P (π1)

Although we could easily compute it this way using only left to right progressing dynamic
programming, we will want to know the value for all possible bottlenecks defined by all possible
positions and states in the matrix. We can do that by doing the dynamic programming conceptually
from right to left.

Let bk(i) = P (xi+1, xi+2, . . . xL, πi = k), that is, the probability of seeing the re-
mainder of the sequence if you start from state k.

bk(i) =
∑
z

P (z | k)ek(xi+1)bz(i+ 1), i > 1 and bk(L) = ek(xL)

46 c© Robert Heckendorn (2015)

3.3. THE HIDDEN MARKOV MODEL

3.3.6 Most Probable State for xi

P (πi = k |x) =
P (x, πi = k)

P (x)
=
fk(i)bk(i)

P (x)

3.3.7 Review of Matrices used

vk(i) = max
π1,...,πi−1,πi=k

P (x1, x2, . . . xi|π1, . . . , πi−1, πi = k)

bk(i) = P (xi+1, xi+2, . . . xL, πi = k)

fk(i) = P (x1, x2, . . . xi, πi = k)

47 c© Robert Heckendorn (2015)

3.3. THE HIDDEN MARKOV MODEL

3.3.8 Revisiting
∑
π

P (x, π)

Consider these reformulations:

Part I: derivation of forward algorithm∑
π

P (x, π)

=
∑
πL

∑
πL−1

· · ·
∑
π2

∑
π1

eπL(xL)P (πL |πL−1)eπL−1(xL−1)P (πL−1 |πL−2) . . . eπ2(x2)P (π2 |π1)eπ1(x1)P (π1)

=
∑
πL

eπL(xL)
∑
πL−1

P (πL |πL−1)eπL−1(xL−1)
∑
πL−2

P (πL−1 |πL−2)eπL−2(xL−2)
∑
πL−3

P (πL−2 |πL−3) . . .∑
π4

P (π5 |π4)eπ4(x4)
∑
π3

P (π4 |π3)eπ3(x3)
∑
π2

P (π3 |π2)eπ2(x2)
∑
π1

P (π2 |π1)eπ1(x1)P (π1)

=
∑
πL

fπL(L)

=
∑
πL

eπL(xL)
∑
πL−1

P (πL |πL−1)fπL−1(L− 1)

therefore fk(i) = ek(xi)
∑

z P (k | z)fz(i− 1) this is equivalent to equation 3.11 in the book. Finally
we see that

fk(i) =
∑
πi−1

∑
πi−2

· · ·
∑
π2

∑
π1

ek(xi)P (k |πi−1)eπi−1(xi−1)P (πi−1 |πi−2) . . . eπ2(x2)P (π2 |π1)eπ1(x1)P (π1)

Part II: derivation of backward algorithm∑
π

P (x, π)

=
∑
πL

∑
πL−1

· · ·
∑
π2

∑
π1

P (π1)eπ1(x1)P (π2 |π1)eπ2(x2) . . . P (πL−1 |πL−2)eπL−1(xL−1)P (πL |πL−1)eπL(xL)

=
∑
π1

P (π1)eπ1(x1)
∑
π2

P (π2 |π1)eπ2(x2)
∑
π3

P (π3 |π2)eπ3(x3) . . .∑
πL−2

P (πL−2 |πL−3)eπL−2(xL−2)
∑
πL−1

P (πL−1 |πL−2)eπL−1(xL−1)
∑
πL

P (πL |πL−1)eπL(xL)

=
∑
π1

P (π1)eπ1(x1)bπ1(1)

=
∑
π1

P (π1)eπ1(x1)
∑
π2

P (π2 |π1)eπ2(x2)bπ2(2)

48 c© Robert Heckendorn (2015)

3.4. PREDICTING REGION CLASSIFICATION

=
∑
π1

P (π1)eπ1(x1)
∑
π2

P (π2 |π1)eπ2(x2)
∑
π3

P (π3 |π2)eπ3(x3)bπ3(3)

therefore bk(i) =
∑

z P (z | k)ez(xi+1)bz(i+ 1) this is equivalent to the recursive equation in the
book for the backward algorithm. Finally we see that:

bk(i) =
∑
πL

∑
πL−1

· · ·
∑
πi+2

∑
πi+1

P (πi+1 | k)eπi+2(xi+1) . . . P (πL−1 |πL−2)eπL−1(xL−1)P (πL |πL−1)eπL(xL)

Part III: derivation when πi is known

We are looking for
∑
π

P (x, π, πi = k) Begin with the expansion used in parts I and II:

=
∑
πL

∑
πL−1

· · ·
∑
π2

∑
π1

eπL(xL)P (πL |πL−1)eπL−1(xL−1)P (πL−1 |πL−2) . . .

eπi+1(xi+1)P (πi+1 |πi)eπi(xi)P (πi |πi−1) . . . eπ2(x2)P (π2 |π1)eπ1(x1)P (π1)

insert the information that πi = k:∑
π

P (x, π, πi = k) =
∑
πL

∑
πL−1

· · ·
∑
π2

∑
π1

eπL(xL)P (πL |πL−1)eπL−1(xL−1)P (πL−1 |πL−2) . . .

eπi+1(xi+1)P (πi+1 | k)ek(xi)P (k |πi−1) . . . eπ2(x2)P (π2 |π1)eπ1(x1)P (π1)

Now we can see that:

∑
π

P (x, π, πi = k) = fk(i)bk(i)

and that

∑
π

P (x, π, πi = k, πi+1 = j) = fk(i)ej(xi+1)P (k | j)bk(i+ 1)

which is the same as equation 3.19 in the book.

3.4 Predicting Region Classification

We now have enough technique to apply answer where the CpG islands are in a variety of ways
with a variety of success. Here are four techniques:

• Varying Window. Repeatedly ask if specific strings are in the class of interest. This can be
exponentially slow if you are probing to discover the classification of subsequences in a longer
one. In short don’t do this for subsequence discovery.

• Best fit path to sequence (Viterbi). Finds the best path π∗. Generally this assumes the
best path is greatly superior to the second best path which might be quite different in its

49 c© Robert Heckendorn (2015)

3.5. PARAMETER ESTIMATION

state sequence. Really this algorithm works quite well given that it assumes an underlying
Markov model.

• Posterior Decoding In this approach we compute P (πi = k |x) by dynamic programming
above computing, an f and b matrix and combining it with P (x).

π̂i = argmax
k

P (πi = k |x)

This gives us a sequence that of π1, π2, . . . πL where at each point the most likely state is
chosen. This may not create anything that looks like the Viterbi path. That is probably
π∗ 6= π̂.

• Weighted Posterior Decoding

Gi(x) =
∑
k

P (πi = k |x)g(k)

Any required interactions between elements that are widely separated in the sequence are not
detectable by this method except by complex machines with a large number of states. Adjustments
to remove states and transitions between states are need to keep the HMMs manageable.

3.5 Parameter Estimation

Given a training set of sequences x1, x2, x3, . . . xn (superscripts for numbering sequences and sub-
scripted to represent individual characters in the sequence) and assuming a topology of states
we want to find the most likely transition and emission probabilities. We will refer to the set of
parameters as θ. We do this maximizing the log probabilities:

logP (x1, x2, x3, . . . xn | θ) =
∑
j

logP (xj | θ)

3.5.1 ...if we know π

If we know πi for each xi then we know all the transitions and emissions that took place and so we
can use the sample as an estimator for the true probabilities. We do this by taking a count of the
the number of transitions of each pair of states and the number each kind of symbol emission for
each state. “Simples”

Let Ak,j be the number of observed transitions k to j.

Let Ek(j) be the number of observed cases when j is emitted in state k.

P (k | j) ≈
Ak,j∑
z Ak,z

50 c© Robert Heckendorn (2015)

3.5. PARAMETER ESTIMATION

Baum-Welsh()
1 Guess some values for P (k | j) and ek(j).
2 repeat
3 for z ← 1 to n
4 do
5 Add to Ak,j and Ek(j) based on xz using P (k | j) and ek(j).
6
7 Estimate new P (k | j) ≈ Ak,j∑

z Ak,z

8 Estimate new ek(j) ≈ Ek(j)∑
z Ek(z)

9
10 until
11

Figure 3.1: The Baum-Welsh Algorithm. Given examples strings, xi i ∈ 1, 2, ...n, and a HMM
topology estimate the parameters for the model.

ek(j) ≈
Ek(j)∑
z Ek(z)

We can even bias the estimations by initializing the counts to ratios that we believe are in
proportion to the true probabilities. This also makes all counts nonzero so we can avoid division by
zero should the sample not contain an emission of a specific state or any transitions from a specific
state.

3.5.2 ...if we don’t know π

If π is not known then the problem becomes one of optimizing a likelihood. We follow this plan
called the Baum-Welch algorithm:

We know that an estimation can be made for Ak,j by

Ak,j =
∑

x∈ trainingdata

∑
π

P (x, π, πi = k, πi+1 = j)

P (x, π, πi = k, πi+1 = j) =
∑
π

P (x, π, πi = k, πi+1 = j) = fk(i)ej(xi+1)P (j | k)bk(i+ 1)

Using Bayes’ Rule:

P (π, πi = k, πi+1 = j|x) =
P (x, π, πi = k, πi+1 = j)

P (x)
=
fk(i)ej(xi+1)P (j | k)bk(i+ 1)

P (x)

51 c© Robert Heckendorn (2015)

3.6. MATHEMATICAL STABILITY OF DYNAMIC PROGRAMMING

Therefore we can use this as an estimator for Ak,j :

Ak,j ≈
∑
z

∑
i

P (π, πi = k, πi+1 = j|xz) where xz is the zth example sequence

=
∑
z

∑
i

fk(i)ej(x
z
i+1)P (j | k)bk(i+ 1)

P (xz)

=
∑
z

1

P (xz)

∑
i

fk(i)ej(x
z
i+1)P (j | k)bk(i+ 1)

which is equation 3.20 in the book. Similarly:

Ek(b) ≈
∑
z

1

P (xz)

∑
i,xzk=b

fzk (i)bzk(i)

which is equation 3.21 in the book.

3.6 Mathematical Stability of Dynamic Programming

Doing arithmatic in log space. Assume a = log(a′) where a′ is the probabilities we are actually
calculating and similarly for b. For multiply it is easy: log(eaeb) = a+ b. For addition it is a little
bit more complicated.

Assume b > a:

ln(ea + eb) = ln(ea + ea+(b−a))

= ln(ea + eaeb−a)

= ln(ea(1 + eb−a))

= ln(ea) + ln(1 + eb−a)

= a+ ln(1 + eb−a)

If b� a then a+ln(1+eb−a) ≈ a+ln(eb−a) = a+b−a = b. The approximate equality becomes
equality when the computer thinks that 1 + eb−a = 1 which for standard IEEE double precision
arithmatic (with a 52 bit mantissa) is about when b − a ≈ ln(252) ≈ 36.04. So if |a − b| > 36.04
then ln(ea + eb) = max(a, b).

If b = a then a+ ln(1 + e0) = a+ ln(2) ≈ a+ 0.6931471806.

A side note is that most computer languages provide access to functions that are numerically
tricky to computer such as:

52 c© Robert Heckendorn (2015)

3.6. MATHEMATICAL STABILITY OF DYNAMIC PROGRAMMING

expm1 = exp(x)− 1

and

log1p = ln(1 + x)

This is kind of work is where these corner case functions might come in handy.

53 c© Robert Heckendorn (2015)

3.6. MATHEMATICAL STABILITY OF DYNAMIC PROGRAMMING

54 c© Robert Heckendorn (2015)

Chapter 4

Profile HMMs

We want to use a biologist verified multiple sequence alignment of a class of sequences to do a
better job of finding similar sequences.

Example: testing if the customer has a dog or not.

You want to create the essense of a dog and test that against the creature brought in rather
than do individual comparisons against sample dogs and trying to merge the results. How do we
create a computational model of an essense?

4.1 Conscensus Modeling

A conscensus sequence is a manufactured sequence from a multiple alignment in which the value
of any string position is assigned the most frequently appearing symbol in that column. When there
is no clear winner a marking character is generally used such as “.”.

4.2 Global Matching with Profile HMM

Build an HMM from repetative structures where each structure is intended to be semi-position
specific. This will be profile for a global match called a profile HMM.

4.2.1 Linear Model

Let’s begin with a simple position dependent model. The straight probability given model M :

[linear model here]

P (x |M) =
∏
j

eMj (xi)P (Mj |Mj−1)

55

4.3. FULL VITERBI EQUATIONS

where j is position of anticipated match (the Mj node) and i is the position in the sequence.
Here each node corresponds to each position in the string. So we can assume each transition
Mj−1 −→Mj has a probablility of 1.

P (x |M) =
∏
j

eMj (xi)

log odds ratio against the random model R is now:

P (x |M)

P (x |R)
= log(eMj (xi)/qxi)

4.2.2 Insertion Model

Here we model the ability to insert many copies of a state with an emission distribution for the
insert state.

[insertion model here]

4.2.3 Deletion Model

Here we add a way to skip match nodes.

[full deletion model here]

4.3 Full Viterbi Equations

The Viterbi Equations allow us to compute P (x, π |M) We often do this so we can really compute:

P (x, π |M)

P (x, π |R)

Here are the equations that make that possible where M are the match nodes, I are the insert
nodes, and D the delete nodes. VM

j (i) is the log odds of the best path matching subsequence

x1, x2, x3, ...xi and emitting xi and ending in state Mj . Similarly for V I
j (i) and V D

j (i) except that
D nodes don’t emit a symbol. NOTE: that often there is no transition between delete and insert
nodes and so those parts of the equation can be ignored in those cases.

56 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

VM
j (i) = log

eMj (xi)

qxi
+ max

VM
j−1(i− 1) + logP (Mj |Mj−1)

V I
j−1(i− 1) + logP (Mj | Ij−1)

V D
j−1(i− 1) + logP (Mj |Dj−1)

V I
j (i) = log

eIj (xi)

qxi
+ max

VM
j (i− 1) + logP (Ij |Mj)

V I
j (i− 1) + logP (Ij | Ij)
V D
j (i− 1) + logP (Ij |Dj)

V D
j (i) = zero + max

VM
j−1(i) + logP (Dj |Mj−1)

V I
j−1(i) + logP (Dj | Ij−1)

V D
j−1(i) + logP (Dj |Dj−1)

The following are a product form of the forward equations (these are not the nice log forms we
see in the book but just provided to make a point about why log doesn’t always make our lives
easy.)

FMj (i) =

(
eMj (xi)

qxi

)
[FMj−1(i− 1)P (Mj |Mj−1) + F Ij−1(i− 1)P (Mj | Ij−1) + FDj−1(i− 1)P (Mj |Dj−1)]

F Ij (i) =

(
eIj (xi)

qxi

)
[FMj (i− 1)P (Ij |Mj) + F Ij (i− 1)P (Ij | Ij) + FDj (i− 1)P (Ij |Dj)]

FDj (i) = [FMj−1(i)P (Dj |Mj−1) + F Ij−1(i)P (Dj | Ij−1) + FDj−1(i)P (Dj |Dj−1)]

Taking the logs of these forward equations to produce the log odds ratio is not as easy as for the
Viterbi equations, since Viterbi equations are strictly product and max functions. Here we have
addition and that imposses a problem. For example:

FMj (i) = log

(
eMj (xi)

qxi

)
+ log[FMj−1(i− 1)P (Mj |Mj−1) + F Ij−1(i− 1)P (Mj | Ij−1) + FDj−1(i− 1)P (Mj |Dj−1)]︸ ︷︷ ︸

OOPS!

4.4 Parameter Estimation

What we want to find is given a topology of a model, that is an set of nodes and interconnec-
tions, we would like to do parameter estimation of the transition probabilities and emission
probabilities from a vetted multiple sequence alignment that represents exemplars from a class of

57 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

interest. The sequences in the multisequence alignment would be the training set for deriving the
parameters and hence completing the HMM specification for the class.

Let cj,a be the observed frequency in training set of character a at position j in the alignment.
We can estimate

eMj (a) ≈ cj,a∑
z cj,z

It is not likely that an amino acid is totally not allowed in any one position and yet for most
samples not all symbols will be found in every column.

4.4.1 Pseudocounts

We could initialize all cj,a = 1 for all j and a. This is like assuming an even initial distribution. A
better idea is to add a count proportional to the expected overall frequency of a symbol:

eMj (a) ≈ cj,a +Aqa∑
z(cj,z +Aqz)

=
cj,a +Aqa∑
z cj,z +A

=
cj,a + αa∑
z cj,z +A

where αa = Aqa may be thought of as a prior for symbol a.

4.4.2 Multinomials and Dirichlet

Let cj be the observed distribution of symbols at position j. Let αi be one of K sets of pseudopriors.
It may be that we can weight the the pseudocount models by the expectation of the pseudopriors
given the data, cj like this:

eMj (a) ≈
∑
y

P (y | cj)
(

cj,a + αya∑
z cj,z + αyz

)

this, in a sense, gives each column of the alignment a chance to emphsize a different set of pseudo-
counts. The difficulty is now in choosing these mixture coefficients P (y | cj). The book suggests
first computing P (cj | y) and using a prior of py with Bayes’ Rule. This they claim this is a direct
analogy with the proportional counts above. And that both can be considered to be transformations
via Bayes’ Rule from a Dirichlet distribution.

58 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

Dirichlet Distribution

Factoid: Like Hercule Porot, Dirichlet is not French, he is Belgian. He was a great
mathematician in number theory and proved Fermat’s Last Theorem for n = 5.
A multinomial distribution for K different possible outcomes:

P (n | θ) =

(∑
z nz

)
!∏

z nz!

K∏
i=1

θnii

where n and θ are vectors of size K. ni is the number of observed occurrences of outcome
i and θi is the probability of outcome i with

∑
z θz = 1. The multinomial distribution

lets us answer questions like what are the odds we see a certain set of outcomes given a
set of odds for those outcomes.
The Dirichlet distribution is analogous in form:

D(θ |α) =
Γ
(∑

z αz
)∏

z Γ(αz)

K∏
z=1

θαz−1
z

The mean of the various outcome k is the normalized value of αk. The distribution is this
form is useful for modeling a distribution of parameter sets θ based on a set of parameters
α. So the result is a distribution on a parameter set.

4.4.3 Substitution Matrix Mixtures

This heuristic uses the substitution matrix S to compute conditional probabilities P (b | a).

λs(a, b) = log

(
P (a, b)

qaqb

)
= log

(
P (b | a)P (a)

P (a)P (b)

)
= log

(
P (b | a)

P (b)

)
=

therefore

P (b | a) = P (b)eλs(a,b) = pbe
λs(a,b)

where λ is the λ of the substitution matrix.

If you start with estimate of the true distribution of a in column j

qj,a =
cj,a∑
z cj,z

then we apply this constraining calculation:

αj,a = A
∑
z

qj,zP (a|z)

59 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

rather than Aqa which we used before. Then we can use the αj,a as before:

eMj (a) ≈ cj,a + αj,a∑
z cj,z + αj,z

In this case we have combined information found in the substitution matrix and general symbol
distribution, q, by using P (a|b) and information from indiviual columns to customize the eMj (a)
help customize to a column. The constant A lets a balance these two forces of choice. An excellent
choice for A is thought to be A = 5Rj where Rj is the number of different symbols in column j.

Compare that with the previous pseudocount formulation:

eMj (a) ≈ cj,a +Aqa∑
z(cj,z +Aqz)

=
cj,a +Aqa∑
z cj,z +A

=
cj,a + αa∑
z cj,z +A

Here general symbol distribution q is used but substitution information is missing.

4.4.4 Estimation from Ancestor

Assume you have Pt(b | a) where t is some time measure. We have an estimate for this from say
Blossum or PAM matrices (given the score and the λ we can get the probability see above.)

What is Pt(yi = a |X1, X2, ..., Xk) where Y is the hypothetical ancestor and the X are the k
samples of the family.

Pt(yi = a |X1, X2...) =
qa
∏
z Pt(x

z
j | a)∑

a′ qa′
∏
z Pt(x

z
j | a′)

Now summing over all possible ancestors and assuming a time t since when we saw that ancestor:

eMj (a) =
∑
z

Pt(a | z)P (yi = z |X1, X2...)

Consider again our K training sequences Xk AND their alignment, so that in column j we find
symbol xkj or a gap. Imagine that x’s are derived via evolution from some ancestral sequence y.
Let’s begin by computing

P (yj = a | aligned(x)) =
qa
∏
k P (skj | a)∑

z qz
∏
k P (skj | z)

So if we can guess the general symbol distribution for y which we denote q, then we have a
probablity of the ancestor amino acid. (We’ll see this again when we do phylogenetics).

Now we can estimate the emissions probabilities

60 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

eMj (a) ≈
∑
z

P (a | z)P (yj = z | aligned(x))

Note that P (a | z) comes from the substitution matrix, a global measure, and P (yj = z | aligned(x))
from common ancestor inference using substitution matrix and general symbol distribution assumed
for the ancestor.

Part of our assumption is that we have strongly conserved regions in the alignment. That means
we should be using different substitution matrices for each column sort of Sj for column j. The
book points to some references for how to vary the substitution matrix per column.

4.4.5 Model Construction

61 c© Robert Heckendorn (2015)

4.4. PARAMETER ESTIMATION

62 c© Robert Heckendorn (2015)

Chapter 5

Phylogenetics

So we have 3+ billion years of evolution and all we can see, for the most part, are today’s DNA
sequences and a few bones. Bummer. We suspect that all creatures come from primordial creatures
in a tree of life. This inheritance forms a true tree like a family tree for a human but for all life
on Earth. Problem 1: We would like to recover a good guess for an evolutionary tree given a set
of creatures for which we have DNA.

The process of building a tree could be done for a whole genome but generally is done for only
a gene or part of gene. Since it is easier to do, we have genes, but perhaps not whole genomes and
other reasons. Problem 2: We would like to recover the evolutionary history in tree form of a set
of genes. The tree we create for a set of organisms/genes is called a phylogenetic tree and the
relationships between the organisms/genes is a phylogeny. And the study of making these trees
is called phylogenetics.

In the rest of these notes I will try to switch to using the term species in the phylogenetic
context to mean species or sequences or genes.

A word of caution: just because we can compute a tree doesn’t make it the right tree. If there
is one thing we can be sure about it is that over the vast stretch of history events of incredibly low
probability happen and can influence the outcome of our analysis today. (see the Ray Bradbury
short story “Sound of Thunder”)

Let’s look a the history of some genes:

[insert picture here]

Homologues are genes that share a common evolutionary history. Orthologues are genes are
homologues that retain their function through evolutionary history. Paralogues are genes that
have diverge not through speciation but through gene duplication. A BLAST search will detect
similar sequences. We often assume these are homologues but they may not be because they don’t
share a evolutionary ancestor. If they are homologues they might be paralogues relative to one
another. One may retain a function and be much more conserved. The other may have drifted
from its function and be evolving at a much higher rate giving the impression it is much older than

63

5.1. TREES IN GENERAL

it is.

5.1 Trees in General

Since we can only look at the DNA of today, we only know the “distance” between the sampled
sequences. We can only guess what the root is of the evolutionary tree implied by the sequences.
We have the option of using techniques to root the tree or leave it unrooted.

Leaves are nodes with only one edge. Nodes that are not leaves are called internal nodes.
The total shape or arrangement of nodes and edges is called the tree topology. The leaves
represent the sequences, species, or genes.

First consider an unrooted tree. It has the property that every internal node has three unordered
edges attached to it. With this definition an unrooted tree of three leaves can be labeled with the
three species in any order and be considered the same tree.

• There is only one labeled unrooted tree of 2 leaves. It has 1 edge.

• There is only one labeled unrooted tree of 3 leaves. It has 3 edges.

• There are 3 labeled unrooted trees of 4 leaves. If we begin with a tree of 3 leaves labeled
A, B, and C. The 4 leaf trees can be generated by taking the unrooted tree of 3 leaves and
allowing a branch to come off of either the edge to A, B, or C. Giving 3 unique trees. This
operation adds 2 edges. These trees have 5 edges.

• By induction if we have a unrooted tree with n leaves there are 2n− 3 edges.

The construction above allows us to specify any tree by building it from 3 leaves up. Since at
each step we have a 2 more choices of edges than at the previous step a recursive formula can be
set up where there are

n−1∏
k=2

(2k − 3)

n leaf labeled trees. A table and a comparison with n! is provided in Table 5.1. The table shows
that there is an amazing explosion of trees even if you have only a small number of leaves. In fact:

n−1∏
k=2

(2k − 3) = 1 · 3 · 5 · . . . · 2n− 5

< (1 ∗ 2) · (2 ∗ 2) · (3 ∗ 2) · . . . · ((n− 2) ∗ 2)

< (n− 2)!2(n−2)

64 c© Robert Heckendorn (2015)

5.1. TREES IN GENERAL

n−1∏
k=2

(2k − 3) = 1 · 3 · 5 · . . . · 2n− 5

> 1 · (1 ∗ 2) · (2 ∗ 2) · (3 ∗ 2) · . . . · ((n− 3) ∗ 2)

> (n− 3)!2(n−3)

Adding a root requires only adding a fake species called root. More about this later. Therefore the
number of labeled unrooted and rooted trees grow exponentially.

n num unrooted trees n! trees/n!

2 1 2 0.50000

3 1 6 0.16667

4 3 24 0.12500

5 15 120 0.12500

6 105 720 0.14583

7 945 5040 0.18750

8 10395 40320 0.25781

9 135135 362880 0.37240

10 2027025 3628800 0.55859

11 34459425 39916800 0.86328

12 654729075 479001600 1.36686

13 13749310575 6227020800 2.20801

14 316234143225 87178291200 3.62744

15 7905853580625 1307674368000 6.04574

16 213458046676875 20922789888000 10.2022

17 6190283353629375 355687428096000 17.4037

18 191898783962510625 6402373705728000 29.9731

19 6332659870762850625 121645100408832000 52.0585

20 221643095476699771875 2432902008176640000 91.1024

Table 5.1: A Comparison of the Number of Unrooted Trees

A second property of a phylogenetic tree is that the edges will be labeled with a useful length.
So the task ahead is not only to select the right tree but the right lengths.

5.1.1 Newick Format

An unrooted tree is hierarchical grouping of leaves with an edge associated with each node both
leaves and internal nodes. Let each leaf be a group. Let a pair of parens group a set of groups
g1, g2, g3, . . . as follows: (g1 : l1, g2 : l2, g3 : l3, . . .) where the li is the distance of the group from the
rest of the tree. This notation is very general. In an unrooted tree each internal node accept one
connects 2 nodes the remaining internal node connects 3 nodes. For example: Assume you have a

65 c© Robert Heckendorn (2015)

5.1. TREES IN GENERAL

Table 5.2: The number of nodes and edges in a tree

Unrooted Rooted

Number of leaves n n

Number of internal nodes n− 2 n− 1

Number of nodes 2n− 2 2n− 1

Number of edges 2n− 3 2n− 2

tree with 4 leaves constructed by making a tree of 3 nodes A, B, and C. Then attaching node D on
the edge leading to C.

(A : a, B : b, (C : c, D : d) : e)

The lengths of the edges connecting to each leaf follow the leaf in the list. The length e is between
the two internal nodes. Unfortunately this notation is not unique. For example:

((A : a, B : b) : e, C : c, D : d)

represents the same tree as above. It all depends on where the list is that has three groups in it.
Draw them out and see for yourself. How many representations are their for a given unrooted tree?
Are there always the same for an n leaf tree?

5.1.2 Tree Space

Since the space of trees is so huge we will have to search some small portion of the space looking for
the tree with the best edge length assignment we can find. Ignoring for a moment how we search
for good edge lengths given a topology. How do we search tree space? We want to take small steps
to move about the tree space assuming that quality of trees is correlated over small steps. That
way we can perform hill climbing to find local optima. The step function defines a neighborhood
and the trees that you can “step” to are called neighbors.

Tree Mutation

Tree mutation or the process of moving to a neighboring tree can mean a terrific speed up in the
computation of any quality measure of the tree since most the tree doesn’t change.

In nearest neighbor interchange (NNI) we define the idea of neighbor by exchanging sub-
trees. Exchanging subtrees joined at an interior node doesn’t work. Exchanging the subtrees about
an interior edge does. For n leaves there are n− 3 internal edges and n external edges. If you
remove an internal edge the four subtrees around it can be rearranged in 2 new ways. So if you
have a tree with n leaves there are 2(n− 3) neighbors.

In subtree pruning and regrafting (SPR) we split a tree at an edge giving a tree of n1 and
n2 leaves. We reattach tree 2 to tree 1 at any remaining edge of which there are 2n1 − 3− 1 if we
ignore the place we got the tree from. We can also attach tree 1 to tree 2 in 2n2 − 4 ways for a

66 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

total of 2n − 8 or 2n − 6 if edge is an external edge. So with n external and n − 3 internal edges
there are 4(n− 3)(n− 2) neighbors which is quadratic in n.

In tree bisection and reconnection (TBR) we remove an interior edge and reconnect both
halfs by adding a branch between any edge in one tree to any edge in the other. There are at most
(2n1 − 3)(2n2 − 3)− 1 neighbors.

In windowing we take a connected subsection of the tree and look at all rearrangements in
just that section.

5.1.3 Tree Construction

How do we get the trees in the first place that we can then mutate?

Sequential Addition

Add a species at a time in the same way we counted the trees. But this time we keep only the best
tree after having made each addition. What if a tree ties with another in score? How many do we
keep?

What order do we add species? Perhaps we should add the species in the order of the most
reliable data. This way the most reliable tree is constructed for the less reliable data. Another
approach may be to include the species that are closest matches first.

Star Decomposition

Start with a star graph which is a graph with one interior node and all leaves attached directly
to that node. Add an edge at a time splitting the graph first into two joined star graphs and so
on. This is not a unique process to reach any one final graph.

5.1.4 Comments on Construction and Mutation

Both construction and mutation involve a way to search limited amounts of the search space.
Nothing guarantees that we have landed within a hill climb of the globally optimum value. In both
cases we make choices between widening the search to cover more space and speed of computation.
There is a rich and deep collection of literature on how to do this but no universal answers.

5.2 Edge Length: Distance Matrix Methods

This class of algorithms uses only pairwise distances to align trees. This leaves out any higher order
interactions so one might think it would not work well, but on the contrary, they seem to do quite
well.

67 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

The basic idea is we compute a table of distances Di,j which is a distance measure between
sequence i and j. We now want to find the tree that “best fits” this data.

5.2.1 Least Squares Methods

If di,j is the distances in our “optimum” tree then for Least Squares Methods we want to minimize
an equation like:

Q =
n∑
i=1

n∑
j=1

wi,j(Di,j − di,j)2

where wi,j is a weight such as 1, 1/Di,j , or 1/D2
i,j but

di,j =
∑
k

inpathi,j(k)vk

now

Q =

n∑
i=1

∑
j 6=i

wi,j(Di,j −
∑
k

inpathi,j(k)vk)
2

Inflection points in this curve can be found by taking the derivative of both sides.

dQ

dvk
= −2

n∑
i=1

∑
j 6=i

wi,j(Di,j −
∑
k

inpathi,j(k)vk) = 0

hmmm. something funny about this derivative. Fix later.

[More about matrix approach later.]

5.2.2 Cluster Methods

Assume we have a distance between individual species di,j . In this approach we are given a matrix
of these distances and we want to cluster the species based on this.

A tree is said to satisfy a molecular clock if the tree is rooted and the height from any species
to the root is the same. This is a very powerful restriction and these trees are called ultrametric.
Distances are ultrametric if for all triplets i, j, k either:

di,j = dj,k = dk,i

or
di,j = dj,k > dk,i for some arrangement of i, j, and k

Another property of trees is that they can be additive. Trees are additive if the distance
between i and j is the sum of the edge lengths traversed in going from i to j. Since it is a tree
there is only one way to get from any i to j.

68 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

UPGMA

UPGMA is Unweighted Pair Group Method with Arithmetic Mean and is a method that clusters
from nearest related pair and moves up the tree. It assumes the tree will satisfy a molecular
clock.

We can talk about a cluster of of species as being a set of species. In our algorithm two clusters
Ci and Cj can have defined a distance between them as the average of all the distances between
the species in the sets.

di,j =
1

|Ci||Cj |
∑

p∈Ci,q∈Cj

dp,q

To merge two clusters, Ci∪Cj → Ck, we can derive the following formula for the set of distances
from other clusters to form Ck. Consider the distance to some other leaf node l:

dk,l =
di,l|Ci|+ dj,l|Cj |
|Ci|+ |Cj |

=

1

|Cl|
∑

p∈Ci,q∈Cl

dp,q +
1

|Cl|
∑

p∈Cj ,q∈Cl

dp,q

|Ci|+ |Cj |

=

1

|Cl|

 ∑
p∈Ci,q∈Cl

dp,q +
∑

p∈Cj ,q∈Cl

dp,q

|Ck|

=
1

|Ck||Cl|
∑

p∈Ck,q∈Cl

dp,q

= distance between k and l

The UPGMA Algorithm

69 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

1. Let the set of clusters be called L and initially i → Ci ∀i that is |Ci| = 1 and L =
C1, C2, . . . CN .

2. di,j is the distance from the initial distance matrix.

3. For each Ci and give it an initial height: hi = 0.

4. Find (i, j) = argmin
Ci,Cj∈L

di,j

5. Merge Ci ∪ Cj → Ck where k is a new cluster number.

6. L← L− Ci − Cj

7. Compute dk,z∀z ∈ L as described above

8. Define height hk = di,j/2 where hk is the height of node that is the ancestor to all in Ck.
When drawing the tree hk is the height above the baseline (where all the leaves are).

9. L← L ∪ Ck

10. While |L| > 1 go to step 4

70 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

Neighbor Joining

Neighbor-joining replaces two clusters with one cluster just as UPGMA but it works with trees
where the molecular clock is not constant, but it requires that the trees be additive. This
algorithm creates an unrooted tree since the lack of molecular clock eliminates the idea of oldest
ancestor node.

First note that if k is first common node on the paths between species i, and m and the path
between j and m (that is it is the fork in the road between i and j from m) then

dk,m =
1

2
(di,m + dj,m − di,j)

and

di,k =
1

2
(di,m − dj,m + di,j)

In the Neighbor-joining Algorithm two distances are used. di,j is the estimated distance between
i and j and Di,j is the distance used in the algorithm for clustering. This second distance is
computed from di,j and so must be computed at each iteration. This slows the algorithm a bit to
as slow as O(n3).

The Neighbor-joining Algorithm

Given a distance matrix d compute an unrooted tree topology complete with edge lengths that
tries to preserve the additive property: di,m + dj,m − di,j = 2dk,m where k is the first node on both
routes from i and j to m.

1. Let the set of clusters be called L and initially i → Ci ∀i that is |Ci| = 1 and L =
C1, C2, . . . CN .

2. di,j is the distance from the initial distance matrix.

71 c© Robert Heckendorn (2015)

5.2. EDGE LENGTH: DISTANCE MATRIX METHODS

3. Compute “normalized distance matrix” Di,j for all i, j such that

Di,j = di,j − (ri + rj) where ri =
1

|L| − 2

∑
z∈L

di,z

This subtracts the average distance to all other nodes than the pair involved. Note: this is
not where we use the distance identity.

4. Use normalized distance to find (i, j) = argmin
Ci,Cj∈L

Di,j

5. Merge Ci ∪ Cj → Ck where k is a new cluster number.

6. Mark old clusters as used so that effectively: L← L− Ci − Cj

7. Compute a new unnormalized distance matrix including the new cluster k and excluding i, j.

dk,z = dz,k =
1

2
(di,z + dj,z − di,j) for all z ∈ L

This uses the additivity of the distances to compute the distance to the new cluster from each
other node.

8. Compute the length of the edges from k to i and j. Even though Ck has assumed the role of
both Ci and Cj you still need the edge length to i and j from k in order to “draw” the tree.

edgei,k =
1

2
(di,j + ri − rj), edgej,k =

1

2
(di,j + rj − ri)

9. Define height hk = di,j/2 where hk is the height of node that is the ancestor to all in Ck.
When drawing the tree hk is the height above the baseline (where all the leaves are).

10. L← L ∪ Ck

11. While there is more than two clusters left go to step 3

12. Finally, join the remaining two clusters with:

edgej,k = di,j

Implementation Notes

Consider this part of the computation:

Di,j = di,j − (ri + rj) where ri =
1

|L| − 2

∑
z∈L

di,z

The values of rz can be computed once each time we want to compute matrix D. This saves a
vast amount of time. Furthermore, since Di,j is only used to find the argmin of Di,j we actually
don’t have to save array D; we only need to find the argmin of it. So first compute all the r and
then combine the argmin step with the computation of Di,j .

72 c© Robert Heckendorn (2015)

5.3. RECURSIVE TREE EVALUATION ALGORITHMS

Comparison of the Approaches

Neighbor-joining is slower but is solves a problem illustrated as follows:

[more, picture]

Also rooting of a tree can be a problem with the NJ algorithm. So adding an outgroup, a
species guaranteed to have evolutionarily diverged first is a common approach. e.g. If you want to
build a tree for a collection of mammals you might want to add a reptile as an outgroup. It should
end up at the root of the tree.

5.3 Recursive Tree Evaluation Algorithms

In these algorithms we will propose a topology, T and evaluate its cost: eval(T) and then use a
minimization scheme to find the lowest cost (best) topology. For the next few algorithms it is
important to note that we will assume we already have an alignment. This will in most cases let
us treat each column of the alignment separately.

The Search

1. propose a tree T

2. evaluate the cost of T retaining best seen so far

3. go back to 1.

5.3.1 Parsimony

Parsimony finds the tree that explains the data with the minimum number of substitutions.

See example in book page 173 under section 7.4. Let’s see how we get an evaluation for a given
topology. For n leaves we will assume a bifurcating tree with hypothetical values at n− 1 internal
nodes. We will construct these values and the cost from leaves up by using recursion starting at
the root and going down.

Notationally: at each leaf k there is a sequence xk with the character at site u denoted xku. Let’s
take one site at a time so the value of u is assumed in a sense to be global. Let’s focus on what
we do at this one site. Sk(a) is the minimum cost of assigning a to node k. For a leaf Sk(a) = 0
if a = xku, that is, it is no cost. For a leaf Sk(a) = ∞ if a 6= xku since that is simply not going to
happen. Another way to treat this is Sk is a vector indexed by all possible values in the sequences:

{Sk(c1), Sk(c2), Sk(c3), . . . } for characters ci

Finally, let S(a, b) the cost of substituting a for b in the evolutionary tree.

Let α be the alphabet of the sequence. Then what we want to compute is min
a∈α

Sroot(a).

73 c© Robert Heckendorn (2015)

5.4. TRADITIONAL PARSIMONY

Cost of Tree at Site u via Weighted Parsimony

This computes ST (a) for all a given T

procedure cost(T , u) :
if T is a leaf :

for a ∈ α :
if a = xku :

ST (a) = 0
else :

ST (a) =∞
else :

for a ∈ α :
cost(left(T), u)
cost(right(T), u)

ST (a) = min
b∈α

(
Sleft(T)(b) + S(a, b)

)
+ min

c∈α

(
Sright(T)(c) + S(a, c)

)
x

left(T)
u = b
x

right(T)
u = c

return ST

with the condition that for the root:

min
a∈α

Sroot(a)

and

xroot
u = a

5.4 Traditional Parsimony

This is the algorithm of Fitch.

procedure cost(T) :
if T is a leaf :

if a = xku :
Rk = a
cost = 0

else :
cost = cost(left(T)) + cost(right(T))
RT = Rleft(T) ∩Rright(T)

if RT = ∅ :
RT = Rleft(T) ∪Rright(T)

cost+ = 1
return cost

74 c© Robert Heckendorn (2015)

5.5. BOOTSTRAPPING

5.5 Bootstrapping

If we have done a stochastic search resulting in a guess for a best tree and we want to in someway
reassure ourselves that we have the right tree then we might try bootstrapping. Bootstrapping
is the

Given a set of n points F̂ = {x1, x2, . . . , xn} that are drawn independently from a distribution
F (θ). We might use this sample to estimate θ.

Even if the distribution F is unknown but n is large enough we can consider our sample, F̂ to
“stand-in” for F and the variation we see in sampling from F̂ should be typical of the variation we
see in any large sample from F . So we calculate θ̂ based on F̂ . We wanted to know the variation
we see in θ̂ based on creating a new n point dataset from F . If we go back to F and draw a
new sample of points we could get more information however, we may not be able to in that. For
example, we might not be able to fly back to New Guinea and collect more toads or there may
not be more amino acids in the aligned sequences. So we do the next best thing, we draw from F̂
with replacement letting F̂ stand-in for F . Weird, eh? So we can compute the variation θ̂ in
estimating θ by resampling n samples of F̂ .

F̂ is called the bootstrap replicate. If we look at the variation in θ̂i computed from many
replicates F̂i we can understand the variation in θ̂.

So how is this useful with phylogenies? Given a set of sequences representing species. The
reason we can construct a tree is that a column of an aligned sequence from one species to the next
is not independent. But we often make the assumption of independence from one column to the
next. So let’s bootstrap the columns and generate new trees!

Assume we have k species with n characters in each sequence. We construct a new set of k
species with n characters in each sequence by drawing columns with replacement from the data we
already have. The result is not a collection of numeric estimates θ̂i but rather a set of trees. Not
as easy to deal with.

5.5.1 Combining Trees

A combined set of trees is called a consensus tree. It is hoped that the consensus tree is a
summary of the good qualities of all of the trees in the set. There are many kinds of consensus
trees we will look at three specific kinds.

For unrooted trees we must first understand the idea of a partition in the tree. If a branch
divides a 5 taxa tree into two groups of taxa {A,B} and {C,D,E} then that can be expressed as
a partition:

{AB|CDE}

A partition consists of a joining of two groups of related nodes in the tree. Of course, every branch
divides the tree into two groups of taxa so there is a mapping from branches to partitions. n leaf
tree produces n− 1 nontrivial partitions in that each group in the partition has more than one
taxon. When we combine trees we may want to preserve certain divisions or partitions

75 c© Robert Heckendorn (2015)

5.6. EVOLUTIONARY MODELS

Majority Rule Consensus

In majority rule consensus we construct a tree that has every group of nodes that appears in
more than 50% of the trees. Suppose we construct such a tree and pick a partition from it say
{α|β}. Then since the groups α and β occur in more than 50% of the trees we know there is a tree
in our sample that has both α and β in it so they must not conflict so the tree is constructable
from the set of all such majority groups.

We can label the internal arcs (nontrivial partitions) by the percentage of trees that have that
partition. This is called the P-value for the edge.

Adams Consensus

A problem with Majority Rule is that if you add an extra copy of one of the trees in the set to
your set it could change the consensus. This is not true of the Adams consensus since it doesn’t
use voting. It tries to prevent a conflict. A three taxon statement is a relationship between
three taxa where two are more closely related than the third. For example, a three taxon statement
might be expressed: ((A,B), C). An Adams consensus tree contains all three taxon statements
that are not contradicted by any tree in the set. Felsenstein [?] describes the three taxon constraint
as going to all trees in the set and removing all but the three nodes in the three taxon statement.
All the trees should now be identical and display the same grouping of closeness. If ((A,B), C) is
in some of the trees in the set but ((A,C), B) is in another tree in the set then a trifurcation is
displayed.

5.5.2 Problems with P-values

P-values can have a multiple tests problem. If you take look for bootstrap support for an
edge by selecting edges with a P > x then you run the risk of finding edges that by accident are
supported.

P-values are not actually probabilities. If an edge occurs 70% of the time then it might actually
have a 95% chance of being true. See Hillis and Bull [?].

5.5.3 Robinson Foulds Distance Metric

The number of branches that are different between the trees. This is done by counting the number
of unique paritions generated by the trees. Very sensitive to small changes in tree shape.

5.6 Evolutionary Models

Consider a substitution matrix that is dependent on time t. S(t) for nucleotides is a 4×4 matrix
of functions dependent on t.

76 c© Robert Heckendorn (2015)

5.6. EVOLUTIONARY MODELS

A property of such matrices is that they are multiplicative:

S(t)S(u) = S(t+ u)

for each element of the matrix this is the same as saying:

P (a | b, t+ u) =
∑
z

P (a | z, t)P (z | b, u)

If this is going to work for any t and u then there is a continuity about the probability that it is
computable directly from time. The instantaneous probability can’t change over time.

Here is the proposed rate matrix used by Jukes-Cantor:

R =

−3α α α α

α −3α α α

α α −3α α

α α α −3α

Consider the substitution over a small time step ε:

S(ε) ≈ I +Rε

then

S(t+ ε) = S(t)S(ε) ≈ S(t)(I +Rε) = S(t) + S(t)Rε

This means that

lim
ε→0

S(t+ ε)− S(t)

ε
= lim

ε→0
S(t)R

From basic calculus this means that
S′(t) = S(t)R

this suggests a matrix like:

S(t) =

g(t) f(t) f(t) f(t)

f(t) g(t) f(t) f(t)

f(t) f(t) g(t) f(t)

f(t) f(t) f(t) g(t)

therefore

S′(t) = S(t)R =

g(t) f(t) f(t) f(t)

f(t) g(t) f(t) f(t)

f(t) f(t) g(t) f(t)

f(t) f(t) f(t) g(t)

−3α α α α

α −3α α α

α α −3α α

α α α −3α

77 c© Robert Heckendorn (2015)

5.6. EVOLUTIONARY MODELS

this gives

S′(t) =

−3αg(t) + 3αf(t) −αg(t) + αf(t) −αg(t) + αf(t) −αg(t) + αf(t)

−αg(t) + αf(t) −3αg(t) + 3αf(t) −αg(t) + αf(t) −αg(t) + αf(t)

−αg(t) + αf(t) −αg(t) + αf(t) −3αg(t) + 3αf(t) −αg(t) + αf(t)

−αg(t) + αf(t) −αg(t) + αf(t) −αg(t) + αf(t) −3αg(t) + 3αf(t)

this means that

g(t)′ = −3αg(t) + 3αf(t)

f(t)′ = −αg(t) + αf(t)

The solution for this is:

g(t) =
1 + 3e−4αt

4

f(t) =
1− e−4αt

4

Note
lim
t→∞

g(t) = 1/4 lim
t→∞

f(t) = 1/4

expected number of substitutions over the maximum likelihood distance

f is the fraction of sites that differ. 3αdML = −3/4 ln(1−4f/3) where dML = −1/4α ln(1−4f/3)
where dML is the maximum likelihood distance

78 c© Robert Heckendorn (2015)

Chapter 6

Multiple Sequence Alignment

How do we do a multiple alignment. The multiple alignment can improve the quality of partic-
ipating pairwise alignments and provide a source of data for protein family profiling.

6.1 Scoring Schemes

Multiple alignment has two parts scoring and alignment. Let’s first look at scoring.

1. Clearly from inspecting multiple alignments we must use a position specific scoring scheme
of some kind since there is a high degree of defitconservation in some columns i.e. limited variation
in the substitution. and low levels of conservation in other columns.

2. Evolutionary history can be very valuable in matching variation between pairs of sequences.
Unfortunately this approach is computationally intensive.

Let m be a multiple sequence alignment.
Let mi be the symbols in column i.
Let ci,a be the count of the number of symbols a in column i.
Let pi,a be the probability of symbols a in column i.

If all of the columns are independent then

S(m) = G+
∑
i

S(mi)

where S is a scoring function and G is a function to score the gaps. This is usually an affine measure
and so not column independent and modeled with G separately. However if the gap penalty is linear
then the gap can be treated as an extra symbol e.g. a 21st amino acid.

79

6.2. SUM OF PAIRS SCORING

6.2 Sum of Pairs Scoring

A fair approximation of S(mi) might be based on summing up a scoring scheme for all pairs of
symbols in the list mi. This is certainly not as perfect as a score that takes in all dependencies
between any subset of the symbols but it sure is easier.

S(mi) =
∑
k<j

S(mk
i ,m

j
i)

Gaps can be handled by S(x,−) and S(−, x) or by an affine gap penalty function.

A true multiple alignment score would be more like this three sequence example:

log

(
Pabc
papbpc

)
6= log

(
Pab
papb

)
+ log

(
Pac
papc

)
+ log

(
Pbc
pbpc

)

6.3 Multiple Dimension Dynamic Programming

This generalization suffers from the curse of dimensionality. Dynamic programming in N di-
mensions requires inputs from 2N − 1 inputs to each position (street corner) in the matrix. Plus if
the sequences being compared are about L symbols, there are about O(LN) positions in the matrix.
So the algorithm takes O(LN2N) time to execute. If S also takes about O(N) to calculate but
worse yet if it is stored as a matrix then it takes KN space. If there are K = 20 amino acids and
N = 10 then that is 10, 000, 000, 000, 000 values in the substitution matrix alone. No one would
ever do it this way but it just shows how quickly the number of options explodes. This also shows
how difficult it will be to contain the explosion.

6.3.1 Containing the Explosion

If we can create severe bounding of function values we can contain the search space and only
consider those areas that might have a chance of producing a minimum score.

Let S(a) be the score for a given multiple sequence alignment a.

S(a) =
∑
k<j

S(akj)

where S(akj) is the score for the pairwise alignment of mk and mj . Assume we have an optimal
alignment for k and j and its score is S(âkj). We know these things:

S(a) =
∑
k<j

S(akj)

Where S(akj) is the alignment score of the pair in the multiple sequence alignment. This is not
known to begin with.

S(akj) ≤ S(âkj)

80 c© Robert Heckendorn (2015)

6.4. A∗, DIJKSTRA’S ALGORITHM AND OTHER NETWORK/TREE OPTIMIZATIONS

Where S(âkj) is the pairwise alignment score. This is computed by something like dynamic pro-
gramming for each pair and so must be at least as good as the pair score that has the restriction
that it must fit with N − 2 extra sequences as well as the jth one.

σ(a) ≤ S(a)

where σ(a) is a lower bound on the multiple sequence alignment score. In particular it is calculated
by some cheap and fast multiple sequence alignment algorithm that gives an adequate lower bound.

For any j and k:

σ(a) ≤
∑
y<z

S(ayz) ≤ S(akj)− S(âkj) +
∑
y<z

S(âyz)

therefore from
σ(a) ≤ S(akj)− S(âkj) +

∑
y<z

S(âyz)

we get:

S(akj) ≥ σ(a) + S(âkj)−
∑
y<z

S(âyz) = βkj

Each βkj is a lower bound on the pairwise alignment we must get for k abd j. The higher these
βkj are the smaller the search space.

For each βkj fine a complete set of coordinate pairs, Bkj such that the best alignment through
each point in Bkj is better than βkj . But we know how to compute this in two dimensions by DP
using Viterbi equations in both a forward and backward form. This is inexpensive: O(L2). In the
original N sequence problem the points in N -space, (i1, i2, i3, . . . , iN) must contain only pairs from
the various set Bkj .

The book points to Gupta et al. at this point for details of how that is done.

6.3.2 Details of MSA

• MSA does allow for affine gap penalties.

• A guide tree is constructed to associate weights with each pair of sequences mk,mj .

• MSA begins with an overestimated lowerbound which may yield no answers and incrementally
reduces the lower bound until answers are discovered. It is too expensive to start with an
underestimated lowerbound... the algorithm might not finish in our lifetime.

6.4 A∗, Dijkstra’s Algorithm and Other Network/Tree Optimiza-
tions

There are many useful optimization algorithms like dynamic programming that can be useful in
sequence analysis. The classic A∗ algorithm is an example of an optimization algorithm that prunes

81 c© Robert Heckendorn (2015)

6.5. PROGRESSIVE ALIGNMENT

it search to just the areas that stand a chance of containing optimal values. When trying to reduce
the vast size of the search space of the optimizations techniques in this family are very useful.

6.5 Progressive Alignment

Start with two sequences aligned. Add another and another progressively. Questions are about
order of progressive construction and how to merge. More specifically:

• what order to align the sequences

• whether the order is sequentially adding to a single group or collecting smaller multiple
alignments and merging

• how to you merge alignments or simply add the next sequence to an existing alignment

Align most similar sequences first. These are reliable and give a strong signal about what can
be expected to be conserved and what cannot in less similar sequences. In order to do this a guide
tree is constructed that groups the sequences together in order of similarity. These cannot be
phylogenetic trees exactly because we need the multiple alignment to do a good phylogenetic tree.
But we need a good phylogenetic tree to get a good alignment. It is a chicken and egg problem.
There exist methods that do both together.

6.5.1 Feng-Doolittle Progressive Alignment

1. Create a matrix of all pairwise distances using a normalization of the pairwise alignment score
as a distance measure

2. Construct a guide tree from the distance matrix using the clustering algorithm of Fitch and
Margoliash (we will do this in the next chapter)

3. Start merging sequences by following the groupings dictated by the tree.

A normalized distance measure is used

D = − logSeff = − log
Sobs − Srand

Smax − Srand
⇔ − log

observed− worst

best− worst

where:

• Srand is the score of aligning two sequences of same length and residue composition

• Sobs is the observed score of the align of interest

• Sbest is the score of the aligning either of the sequences with itself

82 c© Robert Heckendorn (2015)

6.5. PROGRESSIVE ALIGNMENT

The guide tree constructed is now used to select the order of merge.

A sequence is merged into a group by finding the highest pairwise scored individual in the group
with the sequence to be merged. Then use that pairwise alignment to gap the new sequence and
insert into the group.

Similarly, in merging two groups is to find the highest scoring alignment between the pairs
where one sequence is in one group and one sequence is in another.

Once a gap has been inserted into a sequence it is never uninserted. This assumes that the
pairwise alignment contained the most information and so ungapping to accommodate a less similar
sequence would be bad.

6.5.2 Profile Alignments

Progressive alignments that only consider pairwise scores ignore information we wanted to generate
and use in multiple sequence alignment in the first place namely knowledge of conserved regions.
So position specific information accumulated during the multiple alignment should be used. We
can do this by using any position specific scoring matrix or producing an HMM.

In this section profile means a set of sequences that contains information gathered as a whole
and not strictly gathered as isolated pairwise alignments. This is not to be confused with the HMM
profile.

6.5.3 Example: CLUSTALW

CLUSTALW uses a profile-based progressive multiple alignment algorithm much as described: cre-
ating a distance matrix, constructing a guide tree and then performing a progressive alignment.
There are many enhancements and heuristics:

• Use a weighted sum of pairs scoring for sequence comparison. This allows us to discount
biases such as nearly identical sequences.

• Choose substitution matrix so that it most nearly matches the degree of differences in the
sequences to be compared e.g. BLOSUM50 vs BLOSUM80.

• Position dependent gap-open penalties. By gap-open we mean the beginning of a gap as
opposed to in the middle of a series of gaps. gap-extend penalties are the costs to extend
an already opened gap.

• gap-open penalties are decreased if the position is spanned by a consecutive sequence of 5 or
more hydrophilic residues since they are known to be more susceptible to gaps.

• gap penalties of any kind are decreased in areas of low gaps.

83 c© Robert Heckendorn (2015)

6.6. ITERATIVE ALIGNMENT

• if during multiple sequence alignment the score from an alignment comes in significantly lower
than anticipated by pairwise scoring that built the guide tree then do not merge that sequence
if a better choice exists.

6.6 Iterative Alignment

A problem with progressive alignment is that once a sequence has been merged into an aligned
subset of sequences the alignment is frozen regardless of what new information comes to light.

Local optima only has meaning relative to an operator.

This step is an attempt to get better optimum by local search. This is done by for all sequences
unplug a sequence and align it with the rest. Repeat until converged. This is really an example of
stochastic optimization.

6.7 Multiple Alignment by HMM Profiles

HMM profiles are based on firm probabilistic grounds. Let’s begin by assuming we have a HMM
model, topology of states and probabilities, and perform a multiple sequence alignment.

This can arise when we have an HMM profile of a family of sequences and we want to expand
on that family by aligning a set of new examples.

The most probable path for a new sequence though an HMM model can be found via the
Vertirbi algorithm. This associates each residue with a match state or an insert state. A match
state maps to a column in the final alignment. Insert states group inserted residues but do not
attempt to align them. See Figures 6.4 through 6.6 in the book. This takes the rather severe view
that the inserted sequences are unalignable.

Now multiple alignment can be thought of as coming in two parts. First build model, then align
as above. To build the model:

• Choose a number of match states for the model you want to build. This essentially says select
a topology.

• Estimate initial values for parameters. We discussed several ways to do this.

• Use Baum-Welch to estimate parameters

Baum-Welch is just one kind of optimization that finds good parameters.

84 c© Robert Heckendorn (2015)

6.7. MULTIPLE ALIGNMENT BY HMM PROFILES

If we consider optimization as trying to optimize a function in high dimensional space where
each dimension is another parameter to optimize. Then any stochastic optimization algorithm can
be applied but some may work better than others.

A popular stochastic optimization algorithm is simulated annealing. Figure 6.1 is an outline
of the simulated annealing algorithm. Here we are trying to optimize the function f which, in our
case, would be the quality of the parameters for the HMM for the sequences we are trying to match.
The goodness of the move from the current point to the next randomly chosen point is in ∆. Notice
that if ∆ is positive the current move is set to the next move because it has a higher value of the
function f . If ∆ is negative then moving to that point makes f smaller or worse. If always take
the better move we will quickly become stuck in a local optimum (if mutate makes small random
changes in the parameters). But the current move could still set to the next move for negative ∆
with some small probability to allow us to escape the local optimum. The probability is based on
how “bad” the ∆ is and what the value of temperature T . A high temperature means ∆/T → 0
so the probability is near 1. A low temperature (T → 0, T > 0) means ∆/T → −∞ since ∆ < 0 so
the probability is near 0.

for t=0 to ∞ {
T = Schedule(t, T)
if T<lowtemp then return
next = mutate(current)
∆ = f(next)-f(current)
if ∆ > 0 current = next # case of positive ∆
else current = next with probability e∆/T # case of negative ∆

}

Figure 6.1: Simulated Annealing

A brute force approach mentioned is noise injection which is a lot like changing the mutation
function as time passes. There are many variations of stochastic search that can be applied.

85 c© Robert Heckendorn (2015)

6.7. MULTIPLE ALIGNMENT BY HMM PROFILES

86 c© Robert Heckendorn (2015)

Chapter 7

Probabilistic Phylogenetics

f(x) = P (x|y) is the probability of x given y. f(y) = P (x|y) is the likelihood that y yielded x.

What we want to do is ask the related questions:

P (x• |T, t•)

which asks what the probability of seeing sequences x• given tree topology T and edge lengths t•.
and

P (T, t• |x•)

Which is the probability of the tree given the data.

P (H1 |D)

P (H2 |D)
=
P (D |H1)

P (D |H2)

P (H1)

P (H2)

P (H1)
P (H2) is ratio of the probabilities of our hypotheses. This is our prior information before we

observe more data. So we say this is the ratio of prior probabilities. P (D |H1)
P (D |H2) gives us information

about the data we observed. It asks the question: do each of the hypotheses support the data we
see? This provides us a quantitative answer that we can use to modify the prior to get the ratio of
posterior probabilities P (H1 |D)

P (H2 |D) .

7.1 Maximum Likelihood

Let’s assume we can answer the following localized question: P (x | y, t) which is the probability of
seeing an intermediate sequence x given parent sequence y after an edge length or “time” t. If we
assume that columns are independent then this localized question becomes P (a | b, t) which is the
probability of seeing character a as the child of character b in the sequence after length t.

The values P (a | b, t) are a model of the evolution that takes place in the tree. There are many
standard models but we’ll come back to this.

87

7.1. MAXIMUM LIKELIHOOD

If we have these values the P (x | y, t) is simply
∏
u P (xu | yu, t).

For the tree:

we have

P (x1, x2, x3, x4, x5|T, t•) = P (x1|x4, t1)P (x2|x4, t2)P (x4|x5, t4)P (x3|x5, t3)P (x5)

So if we want P (x1, x2, x3|T, t•) we will have to:

P (x1, x2, x3|T, t•) =
∑
x4,x5

P (x1, x2, x3, x4, x5|T, t•)

To find the maximum likelihood tree we will need to do this over all possible T and t•.

There exists a recursive way to solve this. Consider a tree with two leaves:

P (x1, x2, a |T, t1, t2) = P (x1 | a, t1)P (x2 | a, t2)P (a)

therefore,

P (x1, x2 |T, t1, t2) =
∑
a

P (x1, x2, a |T, t1, t2) =
∑
a

P (x1 | a, t1)P (x2 | a, t2)P (a)

To make this recursive:

[needs to be filled in from handwritten notes.]

7.1.1 Felsenstein’s Algorithm

Let the leaf notes of the tree be numbered 1 through N . Let the internal nodes of the tree be
numbered N + 1 through 2N − 1 with the root as 2N − 1. Let Tk denote the subtree starting at
node k and going down to tree to the leaves. Finally, let tk be the edge length from node k to
its parent node. This is the evolutionary distance. Assume independence of columns of data and
denote the columns by u. Consider the tree derived for each column u separately. The likelihood
for the whole tree using column u data is:

P (T2N−1) =
∑
z

P (T2N−1 | z)P (z)

where P (z) is the probability seeing nucleotide (residue) z at the ancestral root.

88 c© Robert Heckendorn (2015)

7.1. MAXIMUM LIKELIHOOD

For any nonleaf node k with children i and j:

P (Tk | z) =
∑
i,j

P (i | z, ti)P (Ti|i)P (j | z, tj)P (Tj |j)

P (Tk | z) =

(∑
i

P (i | z, ti)P (Ti|i)

)∑
j

P (j | z, tj)P (Tj |j)

For any leaf node k:

P (Tk | z) = 1 if z = xku and 0 otherwise

To compute this we need the value of P (Tk | z)|z. This is a vector in R4 for each column of the
sequence.

Time Reversible

Since Felsenstein Algorithm assumes we are building a rootless tree how is it possible that the
algorithm itself refers to a root? It turns out that any node can be the root. To see this assume we
have a tree of two leaves X and Y and an internal node W . This miniature tree can stand in for
any fork in the rooted tree used in the Felsenstein’s Algorithm. Assume that node W has character
z We see that: ∑

z

P (TW | z)P (z) =
∑
z,i,j

P (i | z, ti)P (Ti|i)P (j | z, tj)P (Tj |j)P (z)

Efficiencies

exponentiation precomputing

preserving all the subtree data

leaves are half the number of nodes

making small changes

edge lengths computed by standard gradient methods

You want to compute in log space which requires computing log(x+ y) from log(x) and log(y).
You don’t want to do

log(x+ y) = log(elog(x) + elog(y))

But because the values of elog(x) and elog(y) may differ a lot for large areas of the domain the
function is easy to compute as simply the larger of the two values. For similar values, tricks can be
performed to preserve accuracy and speed computation.

89 c© Robert Heckendorn (2015)

7.2. BAYESIAN

7.1.2 Ambiguities

The Felsenstein algorithm allows us to take various ambiguities into account. Suppose for the
sequence at a leaf we get an “N” rather than a specific nucleotide? The “N” means that any
nucleotide will work. Then what are the values of P (Lleaf | a)? For example, in P (Lleaf |G) we are
asking the question what is the probability of seeing “N” given a G. The answer is 1 and NOT 1

4 !

Suppose we want to account for some reader error, ε at the leaf stage? We can assign P (Lleaf |G)
the values (ε/3, ε/3, 1 − ε, ε/3) to the values returned for each of the (A,C, T,G) cases in the leaf
node. It answers the question: what is the probability that we saw the nucleotide in the leaf
sequence given that the leaf node is “really” G?

7.2 Bayesian

In the Maximum Likelihood section we wanted to compute the likelihood of the observed sequences
x• given a tree topology, T ; lengths of edges, t•; and an evolutionary model and its parameters
(e.g. Kimura 2 Parameter Model), θ. In the book, the model detail was assumed and we had:

P (x• |T, t•)

In the Bayesian approach what we really want to compute is:

P (T, t• |x•)

with some carefully accounted for assumptions. This seems like the more natural question anyway.
We can begin by using Bayes law:

P (T, t• |x•) =
P (x• |T, t•)P (T, t•)

P (x•)
=

P (x• |T, t•)P (T, t•)∑
τ∈ all(T,t•)

P (x• | τ)P (τ)
(7.1)

So we can get the posterior probability P (T, t• |x•) by using the likelihoods and P (x•) or more
specifically by computing the likelihoods P (x• |T, t•) over ALL trees and by using their priors
P (T, t•). The priors is the natural place we want to merge in our understanding of evolutionary
model and any other preconceived ideas about the evolution.

So let’s back up and rethink this from the beginning of this section. We can think of P (T, t• |x•)
as generating a distribution of trees given the fixed data x•. For instance one tree topology and
lengths might be twice as likely as another giving a distribution. So we have to ask ourselves why
we want to know P (T, t• |x•). It is not to get the precise probability of a specific tree but probably
to infer the expected value of some property of the trees given the data!. This would
could be served by finding the whole distribution and computing for property ψ:

90 c© Robert Heckendorn (2015)

7.2. BAYESIAN

E[ψ(τ)|x•] =
∑
τ

ψ(τ)P (τ |x•)

It could also be served by finding a large sample of examples from the distribution of trees
implied by the data. By the Law of Large Numbers if we take a large number of i.i.d. samples
from our distribution P (τ |x•) we can get as close as we want to E[ψ(τ)|x•]. So if τi has twice
the probability of τj in our distribution then τi occurs twice as often in our sample. Crude, but
effective.

So, if we sample a large number of times from the distribution P (τ |x•) then

E[ψ(τ)|x•] ≈
large∑
k=1

ψ(τk)

So to get the real answer we want, we need to find a way to sample from the distribution
P (τ |x•) and decide how many samples is enough. Since the distribution is nearly impossible to
actually compute, we will have to find a trick. The key to this will lie in understanding Acceptance
and Rejection Sampling.

7.2.1 Acceptance and Rejection Sampling

Suppose you have a target pdf π(x) = f(x)/K for some constant K, x ∈ Rd. Let h(x) be a
density that can be simulated such that f(x) ≤ ch(x)∀x Now we want a random sample from π.

Loop {
Generate Y from h
Generate u from U(0, 1)
if (u ≤ f(Y)/(ch(Y)) return Y

}
Now Y will be the sampled from the distribution π but it has various degrees of efficiency

depending on c.

c = maxxf(x)/h(x)

is a good choice.

7.2.2 Metropolis-Hastings Algorithm

The next trick is we won’t try to generate Y from a distribution h but rather we will run a Markov
chain whose stationary distribution is the same as the desired distribution. Then wait until we get
close to the stationary distribution before taking samples. So even though the samples are not i.i.d.
we can use them because over a LARGE NUMBER OF SAMPLES they have the same distribution
as the one we want.

91 c© Robert Heckendorn (2015)

7.2. BAYESIAN

Changes we will make to the Acceptance and Rejection Algorithm: rather than simply generate
from a distribution h, we will use a Markov model that we will construct to have certain properties.
We want to generate a set whose distribution is the same as the distribution over all of the trees.

Loop {
Generate Y based on Xt

Generate u from U(0, 1)
If (u ≤ α(Xt, Y)) Xt+1 = Y
Else Xt+1 = Xt

k++
}

Note that when we reject a sample in this case don’t ignore it we take Xt+1 = Xt. Lot’s of
rejection implies lots of same values but we will be summing over these. In the case of trees τ :

E[ψ(τ)|x•] ≈
n∑

k=m

ψ(τt+1)

where m marks the end of the burn-in period where we were waiting for the Markov model to
get close to its stationary distribution and n is large.

Else τt+1 = τt

Where does the acceptance function α come from and what are the transition probabilities
for our Markov model?

Let’s look to the equation for α which is the probability of accepting the new sample Y . It is
based on the desired distribution π(x) and the Markov model’s transition probability q(Xt+1|Xt):

α(X,Y) = min

(
1,
π(Y)q(X|Y)

π(X)q(Y |X)

)
q(X|Y) is called the proposal distribution and can be absolutely anything (much like h(x))!

Well, almost anything... One thing to note is that if α(X,Y) < 1 then the quotient in the min
function is less than 1 so swapping X and Y makes the quotient greater than 1. Since the min
function is then applied: α(Y,X) = 1. The above algorithm can now be written:

Loop {
Generate Y based on q(. |Xt)
Generate u from U(0, 1)
If (u ≤ α(Xt, Y)) Xt+1 = Y
Else Xt+1 = Xt

k++
}

92 c© Robert Heckendorn (2015)

7.2. BAYESIAN

We can observe several things about the algorithm:

• q(Xt+1|Xt) is the probability of generating Xt+1 for the if statement.

• α(Xt, Xt+1) is the probability of accepting Xt+1 given that the previous generated value was
Xt.

• 1 − α(Xt, Xt+1) is the probability of passing to the else statement if the last two values
generated were Xt and Xt+1

Therefore we can compute P (Xt+1|Xt) for both halves of the if statement starting with the prob-
ability that Xt+1 was generated and then accepted:

P (Xt+1|Xt) =

{
q(Xt+1|Xt)α(Xt, Xt+1) if Xt 6= Xt+1

q(Xt+1|Xt)α(Xt, Xt+1) +
∑

Y (1− q(Y |Xt)α(Xt, Y)) if Xt = Xt+1

The resulting transition matrix, also known as transition kernel, can be compactly written:

P (Xt+1|Xt) = q(Xt+1|Xt)α(Xt, Xt+1) + Test(Xt+1 == Xt)
∑
Y

(1− q(Y |Xt)α(Xt, Y))

where Test(Xt+1 == Xt) returns 1 if the two values are equal and 0 otherwise.

What about the stationary distribution? From the definition of α(., .) let’s assume the case the
fraction is less than 1, i.e. α(X,Y) < 1, then we know:

α(X,Y)π(X)q(Y |X) = π(Y)q(X|Y) and α(Y,X) = 1

α(X,Y)π(X)q(Y |X) = π(Y)q(X|Y)α(Y,X)

π(X)α(X,Y)q(Y |X) = π(Y)α(Y,X)q(X|Y)

π(X)P (Y |X) = π(Y)P (X|Y)

Over all X:

∑
X

π(X)P (Y |X) =
∑
X

π(Y)P (X|Y)

∑
X

π(X)P (Y |X) = π(Y)

This says that
π(X) = π(Y)

so we are going to generate Y ’s using the same distribution as X. If X is from π so will Y ! Holy
cow! So the practical side of this is as the Markov model approaches its stationary distribution it
approaches generating samples from the desired distribution!

93 c© Robert Heckendorn (2015)

7.2. BAYESIAN

7.2.3 Some Practical Points about MCMC

So we have built a Markov model that generates a set of samples from any distribution π and a
proposal distribution q. But how many samples do you need?

convergence

burn-in

mixing

7.2.4 MCMC for trees

In doing MCMC for trees we need to be able to generate samples of trees from a proposal distri-
bution q(.|τ) of the probability of getting the next tree given the last tree and we need our target
distribution π. This is seen in the equation for α:

α(X,Y) = min

(
1,
π(Y)q(X|Y)

π(X)q(Y |X)

)

So all we need is π. But wait! We want the distribution of trees τ which is P (T, t• |x•). This
would allow us to take some function of each tree times the probability of that tree occurring
and get the expected value! So we can use this MCMC to compute the expected value. That is
expected value of some function over samples, X, that come in a distribution π can be estimated
by generating sample Xi with distribution π and averaging the function values over those:

E[f(X)] ≈ 1

n

n∑
i=1

f(Xi) assuming Xi are generated with distribution π

In the case of trees:

P (T, t• |x•) =
P (x• |T, t•)P (T, t•)

P (x•)
=

P (x• |T, t•)P (T, t•)∑
τ∈ all(T,t•)

P (x• | τ)P (τ)

The final trick is that when we use this in the α equation (allowing me to mix my X/Y model
with my τ/T/t• model:

94 c© Robert Heckendorn (2015)

7.2. BAYESIAN

α(X,Y) = min

(
1,
π(Y)q(X|Y)

π(X)q(Y |X)

)
= min

(
1,
P (Y |x•)q(X|Y)

P (X |x•)q(Y |X)

)
= min

1,
P (x• |Y)P (Y)

[∑
τ∈ all(T,t•)

P (x• | τ)P (τ)
]
q(X|Y)

P (x• |X)P (X)
[∑

τ∈ all(T,t•)
P (x• | τ)P (τ)

]
q(Y |X)

= min

(
1,
P (x• |Y)q(X|Y)

P (x• |X)q(Y |X)

)
The intractable sum cancels as does the priors on X and Y ! Check and mate! So if we can

compute the likelihood and the q(.|.) we can efficiently sample the posterior distribution by Markov
model. “Believe it, or not”.

In fact, if q(X|Y) = q(Y |X) the proposal is symmetric. This is the original Metropolis algorithm
from 1953... yes... 1953.

α(X,Y) = min

(
1,
π(Y)

π(X)

)
or

α(X,Y) = min

(
1,
P (x• |Y)

P (x• |X)

)

7.2.5 Incorporating an Evolutionary Model

The individual likelihoods for the data given a tree can be expanded to include the extra parameters
but this will require that we introduce integration over these parameters.

P (x• |T, t•) =

∫
θ
P (T, t•, θ)pdf(θ) dθ (7.2)

where pdf(θ) is the probability density function of the θ which are parameters such as the evo-
lutionary model parameters. In this expression P (T, t•, θ) represents the likelihood as a density
function over θ.

In Equation 7.1 every occurrence of a likelihood is now replaced with an integral from Equation
7.2. The result, although a more refined model, appears to be much harder to compute.

7.2.6 Mr. Bayes, MCMC, and Bootstrapping

If you’ll remember we talked about bootstrapping your ML procedure to get a reliability estimate.
It is when you run optimize the ML tree on many samples (typically a 1000 or more) and build a

95 c© Robert Heckendorn (2015)

7.2. BAYESIAN

consensus tree from that the resulting optimized trees. Compare that with MCMC. Once you have
passed burn-in it generates one tree per ML calculation! You can build a consensus tree from the
resulting sample distribution. That is much faster!

Mr Bayes uses MCMC to generate such a sample and the parameters will now look familiar to
us plus some new twists.

• nst is a parameter that lets us set the evolutionary model assumed. e.g. nst=6

• rates assumed distribution on model parameters e.g. rates=gamma

• ngen number of generations (evaluations) e.g. ngen=1000000

• samplefreq frequency of tree sampling e.g. samplefreq=100

• nchains number of chains running simultaneously e.g. nchains=4

• burnin burnin time in generations e.g. burnin=100000

The trees generated by Mr. Bayes can be fed to PAUP* to find the consensus tree using the
consensus tree tool which uses the same algorithms we discussed in here.

96 c© Robert Heckendorn (2015)

Chapter 8

Grammatical Analysis of Sequences

The Chomsky Hierarchy

• Unrestricted Grammars - equivalent to Turing machines and so encompasses all computation

• Context Sensitive Grammars - substitutions can be sensitive to context, equivalent to linear
bounded automata

• Context Free Grammars - has hierarchical structure, can do nesting of structures, equivalent
to pushdown automata

• Regular Grammars - very linear structure, can’t match nested structures, equivalent to finite
state automata and HMMs

A language is a set of legal strings. If M is a model of a language then L(M) is the set of
strings accepted by the language. In a stochastic grammar there is a probability that a string
S is accepted. This is denoted: P (S |M)

A Context Free Grammar (CFG) has a model that can be represented as

M = (T,N, S, π)

Where

T - a set of terminal symbols such as {a, b, c, d}
N - a set of nonterminal symbols such as {A,B,C,D}
S - a start symbol chosen from T ∪N
π - a set of productions

Let α∗ denote the set of strings each of which is zero or more elements from the set α. Let α+

denote the set of strings each of which is one or more elements from the set α. Let ε denote the
string of no symbols.

97

Productions are rules of the form:

A→ λ

where A ∈ N and λ ∈ (T ∪N)∗

An example set of productions for English. The start symbol is < sentence >.

< sentence > → < subject >< predicate >

< subject > → < article >< noun >

< predicate > → < verb >< direct− object >
< direct− object > → < article >< noun >

< article > → THE | A
< noun > → MAN | DOG
< verb > → BITES | PETS

A statement in the language is a string ~x ∈ x∗ where x ∈ T

Parse is the process of showing how a sentence could be built from a grammar.

A parse tree is a tree based notation showing how a specific sentence is parsed by a set of
productions.

A derivation is the ordered list of steps used in construction of a specific parse tree for a
sentence from a grammar.

Left most derivation is a derivation in which the left most nonterminal is always replaced
first.

98 c© Robert Heckendorn (2015)

8.1. RNA FOLDING

A derivation can be represented as a list of transformations of strings from T ∪N via produc-
tions:

[~s0, ~s1, ~s2, ~s3 . . . , ~sk]

where ~s0 = S and ~sk = ~x and each step from ~si to ~si+1 is governed by a production from π such
that the left hand side of the production is replaced by the right hand side of the production
in one place in string ~si to yield ~si+1. This is list a called a derivation.

CFGs allow arbitrary nesting of elements which a Regular Grammar cannot do. For example:

X → (X)

X → ε

defines a language of matched pairs of parentheses.

Productions for a list of X’s

< sentence > → < sentence > X

< sentence > → X

A language does not necessarily have a unique grammar:

< sentence > → X < sentence >

< sentence > → X

This is also a list of X’s but allows the empty list.

< sentence > → < sentence > X

< sentence > → ε

8.1 RNA Folding

8.2 Stochastic Context Free Grammar

A Stochastic Context Free Grammar (SCFG) also known as Probablistic Context Free
Grammar (PCFG) is a model that include a probability with each production.

M = (T,N, S, π, P)

Where P : πk→R ∀ πk ∈ π and the probabilities are normalize such that ∀ X ∈ N :∑
X → λ∈π

P (X → λ) = 1

99 c© Robert Heckendorn (2015)

8.2. STOCHASTIC CONTEXT FREE GRAMMAR

That is, the sum of the probabilities for each left hand side nonterminal is 1.

If a series of productions [π1, π2, π3, . . . πk] is a derivation of ~x using modelM then the probability
of that derivation happening is:

P (S → ~x |π) =
k∏
i=1

P (πi)

and given all left most derivations of ~x:

P (S → ~x) =
∑
π

P (S → ~x |π)

Example CFG:

S → aXu

X → aY u

Y → cZg

Z → BBBB

B → a | c | g | u

A derivation would be

S
aXu
aaY uu
aacZbuu

aacBBBBbuu
aacgBBBbuu
aacggBBbuu
aacgggBbuu
aacggggbuu

An example SCFG:

A → aBu, P = .5

B → uCa, P = .5

C → cDg, P = .5

D → cEg, P = .5

Z → BB,P = 1.0

B → a | c | g | u, P = .25

100 c© Robert Heckendorn (2015)

8.3. CYK PARSING

S
aSu
aaSuu
aaaSuuu
aaauZauuu
aaauBBauuu
aaaugBauuu
aaauguauuu

P (aaauguauuu) = .5.5.5.51.0.25.25 = 0.00390625

8.2.1 Chomsky Normal Form (CNF)

Any CFG can be converted into a grammar whose productions are either:

X → Y Z

X → a

• Eliminating useless nonterminals (nonterminals that only derive ε)

• Eliminating null productions (X → ε)

• Eliminating unit productions (X → Y)

• Factoring series (X → abc becomes X → aY, Y → bZ, Z → c)

• Factoring out terminals (X → aX becomes X → ZX,Z → a

8.3 CYK Parsing

The following version of the CKY algorithm is taken from Seven Lectures on Statistical Parsing by
Christopher Manning, Stanford.

101 c© Robert Heckendorn (2015)

8.3. CYK PARSING

// returns most probable parse/prob

function CKY(words, grammar)

score = new double[#(words)+1][#(words)+][#(nonterms)]

back = new Pair[#(words)+1][#(words)+1][#nonterms]]

for (i=0; i<#(words); i++)

for A in nonterms

if A -> words[i] in grammar

score[i][i+1][A] = P(A -> words[i])

// handle unaries

added = true

while added

added = false

for A, B in nonterms

if score[i][i+1][B] > 0 && A->B in grammar

prob = P(A->B)*score[i][i+1][B]

if prob > score[i][i+1][A]

score[i][i+1][A] = prob

back[i][i+1] [A] = B

added = true

for span = 2 to #(words)

for begin = 0 to #(words) - span

end = begin + span

for split = begin+1 to end-1

for A,B,C in nonterms

prob = score[begin][split][B] * score[split][end][C] * P(A->BC)

if prob > score[begin][end][A]

score[begin][end][A] = prob

back[begin][end][A] = new Triple(split, B, C)

// handle unaries

added = true

while added

added = false

for A, B in nonterms

prob = P(A->B) * score[begin][end][B]

if prob > score[begin][end] [A]

score[begin][end][A] = prob

back[begin][end][A] = B

added = true

102 c© Robert Heckendorn (2015)

8.3. CYK PARSING

return buildTree(score, back)

In class example:

N1 → N1 +N1

N1 → N2 ∗N2

N1 → X

N2 → X

Convert to Chomsky Normal Form by adding nonterminals Zx:

Production Probability Unary

N1 → N1 Z1 P1

Z1 → Z3 Z2 P2

Z2 → N1 P3 X
Z3 → + P4 X
N1 → N2 Z4 P5

Z4 → Z6 Z5 P6

Z5 → N2 P7 X
Z6 → ∗ P8 X
N1 → X P9 X
N2 → X P10 X

Given string X +X ∗X what is the most likely parse tree?

103 c© Robert Heckendorn (2015)

8.3. CYK PARSING

104 c© Robert Heckendorn (2015)

Chapter 9

Sequence Assembly

9.1 Shotgun Sequencing

Shotgun sequencing is the inference of a large sequence by breaking up the sequence into many
random small parts and then performing sequence assembly.

These notes are from chapter 7 of Waterman’s book: “Introduction to Computational Biology:
Maps, Sequences and Genomes”.

9.1.1 The Shortest Common Superstring Problem

Assume you have a sequence: a = a1a2...aL and you have N fragments F = {f1, f2, ...fN}. We
assume fi 6= fj , i 6= j and no fi is a substring of fj . We make no claims that |fi| = |fj |.

The shortest common superstring or SSP problem. Given set F = {f1, f2, ...fN} find the
string S such that fi is a substring of S for all i. Turns out this problem is NP complete. By
saying a problem is NP complete we are classifying it as a problem that grows exponentially
more difficult with respect to some measure of problem size. (See a theory computation book for
a much longer and more detailed explanation. e.g. Introduction to Languages and the Theory of
Computation by Matin) But we can do a practical job assembling a good enough sequence.

Here is a sample set of six fragments we will use in the examples to follow. These fragments
just happen to be the same length but in general fragments are of various lengths.

f1 = ATAT

f2 = TATT

f3 = TTAT

f4 = TATA

f5 = TAAT

f6 = AATA

105

9.1. SHOTGUN SEQUENCING

The shortest string for the above fragment set is:

TAATATTATA

which coresponds to the overlapping sequences:

(f5, f6, f1, f2, f3, f4)

How do we discover a sequence like this? Consider ordered pair (i, j) then let v be the longest
substring such that fi = uv, fj = vw. Note that v = ∅ is possible. This is the longest overlapping
string. Note that u 6= ∅. If either u = ∅ or w = ∅ then one string is inside the other which is not
allowed by our assumptions. Define overlap to be: ov(i, j) = |v| and prefix to be: pf(i, j) = |u|.
Note: ov(i, j) does not necessarily equal ov(j, i).

Consider:
f1 = TATAGCG

f2 = GCGTA

Then
ov(1, 2) = 3 and pf(1, 2) = 4

but also
ov(2, 1) = 2 and pf(2, 1) = 3

and
ov(1, 1) = 0 since u 6= ∅

if
f3 = TATATA

then
ov(3, 3) = 4 since u 6= ∅

We define a prefix graph to be:

• Edge weighted directed graph

• N verticies that are from F

• N2 edges labeled with pf(i, j). These are the edge weights. Note that both a edge from i to
j exists and from j to i with possibly different weights.

What we are doing in solving the SSP is trying to find a cycle in the complete weighted graph
where the weights of the edges are the values of pf(i, j). To see this imagine that we have k
strings that form a list of vertices in our graph. If we sum the edges that sums up all the extra
nonoverlapping parts until you get to that last sequence which overlaps with the first. This would
be great if our original sequence was a circular piece of DNA like a plasmid. But most of the

106 c© Robert Heckendorn (2015)

9.1. SHOTGUN SEQUENCING

time it isn’t so we must add the full length of the final string. This problem is very similar to
the famous traveling salesperson problem (TSP). This is a classic example of a problem in
computer science that is provably incredibly difficult.

One way to solve this problem is to use a greedy algorithm to find an adequate solution.
A greedy algorithm is one that uses local information only to solve a global problem. That is, it
makes the “greedy” decision based on a short term goal. This is often a useful heuristic. Here is
the greedy algorithm:

S ← ∅
F ← {f1, f2, ...fN}
while F 6= ∅ {

select edge (a, b) ∈ F and maximizes ov(a, b)
if (a, b) completes a cycle then {

remove a from F
add a to S

}
else {

merge a and b
}

}

If we form a matrix of the overlap function for all pairs of fragments we can process the matrix
similarly to the way we did distance methods for phylogenetic trees. Below we labeled boxes show
the order in which the fragments are assembled.

A Table of ov(i, j) with first sequence i and following sequence j.

i\j 1 2 3 4 5 6

1 2 3 1 3 1 1 0

2 0 1 2 6 1 1 0

3 2 3 4 1 3 1 0

4 3 2 0 2 2 5 1

5 2 1 1 1 1 3 3

6 3 2 2 0 2 2 1

This generates the following assembly first a four fragment cycle and then a second two fragment
assembly.

f1f4

f6f1f4

f5f6f1f4

f3f2 f5f6f1f4

107 c© Robert Heckendorn (2015)

9.1. SHOTGUN SEQUENCING

We can now assemble these cycles. Note that it matters in what order we assemble the sequences.

f3f2 = TTATT

f5f6f1f4 = TAATATA

which can be merged to
TTATTAATATA

which is 11 characters or one more than the optimal sequence. If we assembled the cycles in a
different order we would have gotten a 12 character sequence.

TAATATATTATT

Our greedy algorithm only uses the orginal overlap values. Perhaps we could look for new
overlaps that might be formed. In fact that will do us no good. To see that the question: can fi be
a substring of f1 ∪ f2 = f = uvw? If it could then v must be contained in fi or fi would have been
contained in either of f1 or f2. But if v is in fi and not contained then it must have some part of
u in it as well. But then ov(i, 2) > ov(1, 2) but that can’t be because of our algorithm.

9.1.2 Real World Shotgun Sequencing

But, of course, things are never so nice. The fragments we get generally:

1. Some fragments are substrings of others

2. We don’t know which direction to read the string. The shotgun approach to shattering the
sequence doesn’t perserve only only one direction of the string. We now need to consider that
either fi or its reverse f ri could be used.

3. And worst of all our sequencers are not perfect. We have to deal with mismatches, insertions
and deletions just like we have seen in sequence alignment.

Here is a rough outline of how practical shotgun sequencing is done.

1. Compute all pairwise alignments both between fi and fj and between fi and f rj . This can
be done by using dynamic programming as we did at the beginning of class. For any pair
of sequences it could be that one sequence is contained inside the other. We setup the DP
matrix. We detect contained sequences by looking for matches that terminate in the middle
of the DP matrix. We remove duplicates. Then we then detect if there is an overlap. This
can be done by looking for matches along the lower edge or the right edge of the DP matrix.

2. choose an orientation by
max(A(fi, fj), A(fi, f

r
j))

where A is the alignment score.

108 c© Robert Heckendorn (2015)

9.2. OTHER TECHNIQUES

3. ignore alignments that score less than some C i.e. A(fi, fj) < C.

4. Perform greedy algorithm comparing all competing alternatives.

Each pairwise alignment is local and as such suffers from not knowing about other attempted
alignments.

9.2 Other Techniques

9.2.1 Other Approaches

A k-tuple approach uses a fixed k long fragment that is either derived from longer fragments or
by using microarrays and hybridizing. The later approach is called sequencing by hybridizing
or SBH.

109 c© Robert Heckendorn (2015)

Index

k-tuple approach, 107
w-mer, 34

acceptance function, 90
accepted, 95
additive, 66
Affine, 25
affine gapping, 25
alignment, 77

Backward Algorithm, 46
bandwidth, 35
Baum-Welch algorithm, 51
Bayes’ Theorem, 12
bits, 14
bootstrap replicate, 72
bootstrap support, 73
Bootstrapping, 72
burn-in period, 90

CFG, 95
cluster, 66
conditional probability, 10
conscensus sequence, 53
consensus tree, 72
consistent, 35
Context Free Grammar, 95
curse of dimensionality, 78

derivation, 96, 97
Dirichlet distribution, 57
dotter program, 37
dropoff limit, 35
dynamic programming, 18

edge, 62

edge effects, 36
emissions probabilities, 44
entropy, 14
expected score, 29
extension cost, 25
external edges, 64
extreme value distribution (EVD), 36

Forward Algorithm, 45

gap, 22
gap-extend, 81
gap-open, 81
gapped dropoff limit, 35
greedy algorithm, 105
groups, 72
guide tree, 79, 80

heuristic, 105
Hidden Markov Model (HMM), 44
high scoring pairs, 35
High-scoring Segment Pairs, 33
hill climbing, 64
Homologues, 61
HSP, 33, 35

i.i.d., 13
independent, 10
independent and identically distributed, 13
information content, 14
initial cost, 25
internal edges, 64
internal nodes, 62

joint probability, 9, 10

Karlin-Altschul Statistic, 36

110

INDEX

language, 95
LCR, 37
Leaves, 62
left hand side, 97
Left most derivation, 96
left most derivations, 98
likelihood, 12, 85
limiting transition probability, 42
lod, 27
log odds ratio, 27
low complexity regions, 37

majority rule consensus, 73
Marginalizing probabilities, 12
Markov model, 41
message, 14
minimum description length (MDL), 15
mixture coefficients, 56
molecular clock, 66
multinomial distribution, 57
multiple alignment, 77
multiple tests problem, 73
multistep transition probabilities, 42
mutual information, 15
mutually exclusive, 9

nats, 14
nearest neighbor interchange, 64
neighbors, 64
NNI, 64
nodes, 62
nonterminal symbols, 95
nontrivial partitions, 72
normalized score, 29
NP complete, 103
null productions, 99

odds ratio, 26
Orthologues, 61
outgroup, 69
overlap, 104

P-value, 73
PAM, 26

Paralogues, 61
Parameter Estimation, 50
parameter estimation, 55
Parse, 96
parse tree, 96
Parsimony, 70
partition, 72
path, 44
PCFG, 97
percentage identical, 29
phylogenetic tree, 61
phylogenetics, 61
phylogeny, 61
Posterior Decoding, 50
posterior probabilities, 85
posterior probability, 12
prefix, 104
prefix graph, 104
prior probabilities, 12, 85
priors, 13
probability, 85
Probablistic Context Free Grammar, 97
Productions, 96
profile, 81
profile HMM, 53
proposal distribution, 90

query coverage, 37
query sequence, 33

raw score, 28
recursive function, 17
region classification, 49
relative entropy, 15, 29
right hand side, 97

sampling probability, 12
satisfy a molecular clock, 66
SBH, 107
scaling constant, 28, 29
SCFG, 97
scoring, 77
scoring matrix, 23, 28

111 c© Robert Heckendorn (2015)

INDEX

SEG program, 37
sensitivity, 33
sequence assembly, 103
sequencing by hybridizing, 107
shortest common superstring, 103
Shotgun sequencing, 103
sigmoid function, 32
significance evaluation, 35
simulated annealing, 83
SPR, 64
SSP, 103
star graph, 65
start symbol, 95
state probabilities, 42
state transition probability, 41
statement, 96
Stochastic Context Free Grammar, 97
stochastic grammar, 95
stochastic optimization, 82
substitution matrix, 23, 28
subtree pruning and regrafting, 64

target frequency, 27
target pdf, 89
TBR, 64
terminal symbols, 95
the likelihood of B, 12
the probability of A, 12
three taxon statement, 73
topology, 55
training data, 43
training set, 56
transition kernel, 91
traveling salesperson problem, 105
tree bisection and reconnection, 64
Tree mutation, 64
tree of life, 61
tree topology, 62

ultrametric, 66
unit productions, 99

Varying Window, 49

Viterbi Algorithm, 45, 49

Weighted Posterior Decoding, 50
windowing, 64
word, 34
word hit, 34

112 c© Robert Heckendorn (2015)

