Assignment 5 CS515-S15 Due: Wed Apr 29, 2015 at 5pm PT

Points: 100

Neighbor Joining Tree Construction

Write a Python program nj.py based on the upgma code that we gave in class that will read in a lower triangular
distance matrix and generate the groupings and lengths of edges of a non-rooted tree that “fits” the data. You must
work from the supplied upgma.py| program. Your program does not need to draw a tree. An machine readable copy
of sample data from Felsenstien is here: |../dogbear.dat.

To illustrate the format of the input it looks like:

Dog Bear Raccoon Weasel Seal Sealion Cat Monkey

32
48 26
51 34 42

50 29 44 44

48 33 44 38 24

98 84 92 86 89 90

148 136 152 142 142 142 148

and is in the same form as for our upgma. Feel free to use the lib515.py library.
OurpuT

For your information, here is the tree for the dogbear.dat data in Newick format with distances following each
leaf and internal node:

((Bear:6.87500, Raccoon:19.12500):1.75000, ((Seal:12.35000,
Sealion:11.65000):7.81250, (Weasel:19.56250, (Cat:47.08333,
Monkey:100.91667) :20.43750) : 1.56250) :3.43750, Dog:25.25000) ;

However, your program needs to output exactly three lists:

e The list we called merge in the upgma example.
e The list we called size in the upgma example.

e A list of edge pairs (as tuples) for each internal node except the last. These are the distances to each of the
subclusters in a cluster. The last element in the list is the final distance between the last two clusters to be
merged.

o, 1, 2, 3, 4, 5,6, 7, (7r, 6), (5, 4, (2, 1), (10, 0), (8, 3), (11,
9), (12, 13)]

(+¢, 1, 1,1,1,1,1,1, 2,2, 2,3, 3,5, 8]

[0, o, 0, 0, 0, 0, 0, 0, (100.91666666666666, 47.08333333333334),
(11.650000000000006, 12.349999999999998), (19.125, 6.875), (1.75,
25.25), (20.4375, 19.5625), (3.4375, 7.8125), 1.5625]

Notice that in order to get the correct output the final step must be to put the final distance on the list of edge pairs
and the final cluster and size on their respective lists.

http://marvin.cs.uidaho.edu/Teaching/CS515/Pas05/upgma.py
http://marvin.cs.uidaho.edu/Teaching/CS515/Pas05/../dogbear.dat
http://en.wikipedia.org/wiki/Newick_format

THE NEIGHBOR-JOINING ALGORITHM
Given a distance matrix d compute an unrooted tree topology complete with edge lengths that tries to preserve the
additive property: d; m + djm — di j = 2dg,m where k is the first node on both routes from ¢ and j to m.

1. Let the set of clusters be called L and initially ¢ — C; Vi that is |C;| =1 and L = C,Cs,...Ch.
2. d; ; is the distance from the initial distance matrix.

3. Compute “normalized distance matrix” D; ; for all ¢, j such that

1
Di’j = di’j — (Ti + rj) where r; = 7|L| 5 ZGZLdZ’Z

This subtracts the average distance to all other nodes than the pair involved. Note: this is not where we use

the distance identity.

4. Use normalized distance to find (4, j) = argmin D; ;
Ci,Cj eL

5. Merge C; U C; — C}, where k is a new cluster number.
6. Mark old clusters as used so that effectively: L <— L — C; — C;

7. Compute a new unnormalized distance matrix including the new cluster k& and excluding i, j.

1
dk,z = dz,k = i(di’z + dj,z — di,j) forall z€ L
This uses the additivity of the distances to compute the distance to the new cluster from each other node.

8. Compute the length of the edges from k to ¢ and j. Even though C} has assumed the role of both C; and C}

you still need the edge length to ¢ and j from k in order to “draw” the tree.
1 1
€dg€i7k = i(diJ +7r; — 7’]'), €dg€j7k = i(diJ +r;— ’/‘i)
9. Define height hj, = d; ;/2 where hy, is the height of node that is the ancestor to all in Cj. When drawing the
tree hy is the height above the baseline (where all the leaves are).
10. L+~ LUCy
11. While there is more than two clusters left go to step 3

12. Finally, join the remaining two clusters with:

edgem = d@j

IMPLEMENTATION NOTES
Consider this part of the computation:

1
Di’j = di’j — (Ti + ’I“j) where r; = 7|L| 5 ZGZLdi’Z

The values of r, can be computed once each time we want to compute matrix D. This saves a vast amount of time.
Furthermore, since D; ; is only used to find the argmin of D; ; we actually don’t have to save array D; we only need
to find the argmin of it. So first compute all the r and then combine the argmin step with the computation of D ;.

Figure 1: The non-rooted tree for the given problem drawn as a rooted tree.

In the box is an excerpt from the class notes on the algorithm.
Submission

As always, do your own work. Do not copy from others or from the internet. Using what we did in class is
perfectly legal. Submit a single file named nj.py to the class submission page. The test script will ignore the spacing
you choose and focus on non-whitespace. Remember no late papers and so always turn something in for partial
credit.

