
Analysis of Algorithms (CS395) Class Notes

Robert B. Heckendorn

Computer Science Department, University of Idaho

May 6, 2013



ii c© Robert Heckendorn (2013)



Contents

Preface v

1 Introduction 1

1.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Euclid’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Analysis of Resource Use 7

2.1 Order of execution (counting x’s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Best, Worst, Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Example Analysis of Linear Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Order Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 BIG O (Upper Bound) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.2 BIG OMEGA (Lower Bound) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.3 BIG THETA (Approximately the Same) . . . . . . . . . . . . . . . . . . . . . 11

2.4.4 Some Useful Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.5 Comparing Order of Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Analysis of Nonrecursive Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Some Useful Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



CONTENTS

2.6 Some Example Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Find the Maximum of a List . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.2 Does List Have Only Unique Values? . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Matrix Multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Recursive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Space Allocation (Number as Binary String) . . . . . . . . . . . . . . . . . . . . . . . 23

2.9.1 Basic Recursive Number to Binary Algorithm . . . . . . . . . . . . . . . . . . 23

2.9.2 Divide and Conquer Recursive Number to Binary Algorithm . . . . . . . . . 24

2.9.3 Using Faster Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Towers of Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Divide and Conquer 29

3.1 The Master Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv c© Robert Heckendorn (2013)



Preface

This course is the study of algorithms and their analysis.

These are notes I lectured from and look like it.

This set of notes is provided as is as an aid to study, discussions in class, the book, and posted
algorithms. It is only just beginning and as such it is not complete. But I hope it is helpful.

v



vi c© Robert Heckendorn (2013)



Chapter 1

Introduction

This course is about algorithms and their analysis.

1.1 Algorithms

Algorithms are core of Computer Science. The study of algorithms is the study of process.

An algorithm is instructions for doing something: a formal process, a recipe, laws, method for
doing something

Algorithms come from ancient times:

• How to make butter and cheese

• Egyptian division

• Euclid’s algorithm

Algorithms are executable math and as precise as mathematics.

What are necessary requirements for an Algorithm?

1. Well-defined

2. Transformation (function) of input to output

3. Guaranteed to work over a well specific domain

4. Terminates in a finite number of steps

1



1.2. ANALYSIS

Properties of algorithms:

• notation for the algorithm (written out in English? Chinese? Pseudocode? Python?)

• many algorithms for the solving the same problem (same transformation)

Computers give us the ability to implement an algorithm. An implementation of an algorithm
is a specific description of the algorithm but not the algorithm itself.

In this course we want to understand about design, construction, analysis of algorithms with plenty
of examples.

like mathematics:

• some algorithms are just beautiful

• beauty vs “it seems to work”

• beauty provides clarity/provability/supportability

An algorithm is a well defined description of how to compute a function defined over a domain in
a way that must terminate. Some examples of function domain and results (range):

Defined over reals returning a real
f : R→ R

Defined over pairs of reals returning a real

f : R×R→ R

Let counting numbers N = 1, 2, 3, ... then

f : N→ N

Defined over 8 bit strings and return a counting number:

f : B8 → N×N

1.2 Analysis

The other half: Analysis:

2 c© Robert Heckendorn (2013)



1.3. EUCLID’S ALGORITHM

Talk about casual word: tractable. Analyzes the consumption of resources. (limited resources or
constraints (e.g. time) )

Resource: time

HP sorted a table using n2 sort
result: never sorted the table. Feature never used.

switched to a quick sort algorithm and then
result: sorting the table became the default

solvable means it can take an astronomical amount of resources. Advanced Encryption Standard:
256bits 2256 ≈ 1077. What are resources important?

Resource: time
You are doing a research project one algorithm takes 1 min to run or 1 day to run? what is the
effect?

Resource: space
What if one algorithm takes 10MB and the other takes 10GB?

Resource: how space is organized
How you access memory can be critical

Resource: money
Power ball is solvable it just costs you a dollar a ticket! It is solvable but intractable.

To understand the practical difficulty of problems and algorithms we need to see that we are not
only interested in the classical difference between easy problems and hard problems but we must
consider the subjective intractable problems as measured by terms of resources available and
our tolerance for consumption of those resources such as time and money. Such as will it finish
before we die, in time to analyze the data, before the entropy death of the universe, in human
reaction time etc.

1.3 Euclid’s Algorithm

Euclid’s algorithm for finding the greatest common division is over 2000 years old!

what is gcd(m,n)? Gcd is:
gcd : Z×Z→ Z

the largest g : g|m and g|n

Notation: | means divides evenly. Like 2|6, but it is not the case that 4|6. That is the remainder
of 6 divided by 4 is 2 or 6 mod 4 ≡ 2.

3 c© Robert Heckendorn (2013)



1.3. EUCLID’S ALGORITHM

Throughout the class we will just use Python as the way to express our algorithms rather than using
a random pseudocode. This has the advantage that the result will in most cases be executable. A
side-effect is that if it is precise enough to execute then it is precise enough to specify the algorithm.

Here is one way to write Euclid’s Algorithm:

EUCLID’S ALGORITHM

def euclid(m, n) :

if n==0 : return m

return euclid(n, m % n)

example:

gcd(55, 22)

same as gcd(22, 55%22) = gcd(22, 11)

same as gcd(11, 22%11)

answer is 11

gcd(55, 20)

same as gcd(20, 55%20) = gcd(20, 15)

same as gcd(15, 20%15) = gcd(15, 5)

same as gcd(5, 15%5)

answer is 5

gcd(55, 21)

same as gcd(21, 55%21) = gcd(21, 13)

same as gcd(13, 21%13) = gcd(13, 8)

same as gcd(8, 13%8) = gcd(8, 5)

same as gcd(5, 8%5) = gcd(5, 3)

same as gcd(3, 5%3) = gcd(3, 1)

same as gcd(1, 3%1)

answer is 1

why does this work: gcd(m,n) = gcd(n,m%n)

CASE 1: for any g|m,n
and r = m%n
we know m = k ∗ n+ r
so m = k ∗ n+ r and we know g|m and g|k ∗ n

4 c© Robert Heckendorn (2013)



1.3. EUCLID’S ALGORITHM

therefore g|r !
and so g|m%n

CASE 2: Also if g|n, r
similarly g|m.

BECAUSE OF CASE 1 and 2 the sets of divisors is the same gcd(m,n) = gcd(n,m%n)

CASE 3: What about if g|m, r does g|n? No.

gcd(m,n)→ gcd(n,m%n) works, but
gcd(m,n)→ gcd(m,m%n) does not work because gcd(60, 14)! = gcd(60, 4) = gcd(60, 60%14)

For Euclid’s Algorithm to be an algorithm it must terminate. Can we prove that Euclid’s Algorithm
terminates?

0 <= m%n < n

what happens when m%n==0?

m = n+ r
where r = (m− n)

CASE 1: for any g|m,n
and r = m− n
then g|r

CASE 2: Also if g|n, r
similarly g|m− n and g|n
then g|m

CASE 3: What about if g|m, r does g|n?
g|m− n and g|m then g|n so... Yes.

gcd(m,n)→ gcd(n,m− n) works but
gcd(m,n)→ gcd(m,m− n) fails because m− n is necessarily less than n

euclid-minus.py 55 21 2>/dev/null | head -40

55 21

21 34

34 -13

-13 47

47 -60

-60 107

107 -167

-167 274

5 c© Robert Heckendorn (2013)



1.3. EUCLID’S ALGORITHM

274 -441

-441 715

715 -1156

swap fixes this

———————————————————————-

How much resources does it take? PRINT x’s in the algorithm for each “unit” of resource used.

Now look at generating primes. Now look at sieve of Erastatanes.

How do measure how hard it is? When have we made a fundamental change.

6 c© Robert Heckendorn (2013)



Chapter 2

Basic Analysis of Resource Use

2.1 Order of execution (counting x’s)

We can’t count seconds for time because machines very. But we can count things that are propor-
tional to the amount of time used. We select something as a measure of the size of the input and
measure how the number of x’s changes as the size of the input changes.

Loosely speaking, the order of execution is count of key operations (x’s) in terms of size of
input. If T measures the time resource used then:

T (input) = CostOfOperation ∗ Count(input)

where Count counts the number of units of resource used as a function of input size. For example if
doing a matrix multiply algorithm Count might measure the number of multiplies (a key operation
tied to time) needed for a given size of matrices.

What is going to make a bigger effect on the use of resources: adjusting CostOfOperation or how
Count relates input size to number of operations performed? If Count goes up as the square of the
input and you can force it to instead go up as n log(n) then that is a game changer.

Some examples of counting:

Problem Size of input Key operation

Search for items in a list Num items Comparison

Multiply matrices Matrix dims or num elem Multiply 2 nums

Primality testing Size of n or num dig of n Div 2 nums

Graph problem Num V or E Visiting a V or E

7



2.2. BEST, WORST, AVERAGE

The practiced software engineer understands how their algorithm performs in terms of input size.
The engineer might ask: how does the program slow as input size is increased?

Assume a problem takes about order n2 to do its task and I double the input size?

(2n)2/(2n) = 4

what about for order n?

2n/n = 2

for
√
n?

√
2n/
√
n =
√

2

for log2(n)?

log(2n)/ log(n) = (log(2) + log(n))/ log(n) = log(2)/ log(n) + 1

for 2n?

22n/2n = 2n

2.2 Best, Worst, Average

Three important measures for problems of size n.

worst = max
all of size n

C(n)

best = min
all of size n

C(n)

avg = avg
all of size n

C(n)

Best case performance is finding an example input that uses the least resources. Worst case
performance is finding an example input that uses the most resources. Average case perfor-
mance is the expected performance over all inputs. This generally assumes some stated distribution
of inputs of size n.

8 c© Robert Heckendorn (2013)



2.3. EXAMPLE ANALYSIS OF LINEAR SEARCH

2.3 Example Analysis of Linear Search

LINEAR SEARCH

def isin(l, a) :

for i in range(0, len(l)) : # from 0 to len(l)-1

if l[i] == a : return True

else : return False

The program can be tested with this input

print(isin([3, 1, 4, 1, 5, 9, 2], 2))

print(isin([3, 1, 4, 1, 5, 9, 2], 3))

print(isin([3, 1, 4, 1, 5, 9, 2], 8))

worst case = n
best case = 1
average case (assume prob of being found is p prob of being found at position k is p/n)

The details for average case are:

p/n(n(n+ 1))/2 + n(1− p) = p(n+ 1)/2 + n(1− p)
= (p/2)n+ (p/2) + n(1− p)
= (p/2 + 1− p)n+ (p/2)

= (1− p/2)n+ (p/2)

As p→ 1 this goes to (n+ 1)/2. As p→ 0 this goes to n.

this is linear... what do we really mean?

2.4 Order Notation

Order notation talks about the growth of resource consumption (within a constant). There are
three popular measures.

9 c© Robert Heckendorn (2013)



2.4. ORDER NOTATION

2.4.1 BIG O (Upper Bound)

f(n) ∈ O(g(n))

if f(n) ≤ Cg(n) ∀n ≥ n0 and some fixed C.

This says f(n) can never catch up to g(n) for large enough n and some fixed C. That is, g is an
upperbound of f .

For example:

n ∈ O(n2)

This says n is bounded above by a constant times n2 for all n greater than or equal to some n0.
Another couple of examples:

n3 6∈ O(n2)

8128n2 ∈ O(n2)

Prove 100n2 + 17n+ 360 ∈ O(n2):

100n2 + 17n+ 360 ≤ 360n2 + 360n+ 360 = 360(n2 + n+ 1) ≤ 360(n2 + n2 + n2) = 1080n2

So for n ≥ 1 and C = 1080 it is the case that 100n2+17n+360 ≤ Cn2 and hence 100n2+17n+360 ∈
O(n2).

Show 27n ∈ O(n2):

27n ≤ n2 for n ≥ 27 and C = 1

Note that we have found a C and an n0 that satisfies the requirements for big O.

2.4.2 BIG OMEGA (Lower Bound)

f(n) ∈ Ω(g(n))

10 c© Robert Heckendorn (2013)



2.4. ORDER NOTATION

if f(n) ≥ Cg(n) ∀n ≥ n0 and some fixed C

g(n) can never catch up to f(n) for large enough n

n3 ∈ Ω(n2)

2.4.3 BIG THETA (Approximately the Same)

f(n) ∈ Θ(g(n))

if C1g(n) ≤ f(n) ≤ C2g(n) ∀n ≥ n0

For example, show:

(n− 1)n

2
∈ Θ(n2)

Proof:

≤ (n− 1)n ≤ n2 for n > 1

(n− 1)2 ≤ (n− 1)n ∀n > 1

(n− 1)2
n2

n2
≤ (n− 1)n ∀n > 1

(n− 1)2

n2
n2 ≤ (n− 1)n ∀n > 1

1

2
n2 ≤ (n− 1)2

n2
n2 ≤ (n− 1)n ∀n > 2 +

√
2

Therefore with C1 = 1
2 and C2 = 1 and n0 = 2 +

√
2 :

1

2
n2 ≤ (n− 1)n ≤ n2 ∀n > 2 +

√
2

You can see in the following graph that n(n− 1) is “pinned” between the other two functions:

11 c© Robert Heckendorn (2013)



2.4. ORDER NOTATION

2.4.4 Some Useful Theorems

These are statements about

f(n) ∈ O(f(n))

f(n) ∈ O(g(n)) iff g(n) ∈ Ω(f(n))

f(n) ∈ Ω(f(n)) and f(n) ∈ O(f(n))

if f(n) ∈ Ω(f(n)) and f(n) ∈ O(f(n)) then f(n) ∈ Θ(f(n))

if f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)) then f(n) ∈ O(h(n))

if fa(n) ∈ O(ga(n)) and fb(n) ∈ O(gb(n)) then fa(n) + fb(n) ∈ O(max(ga(n), gb(n)))

This is saying that in computing the upperbound of resource consumption you only need to pay
attention to the function that is taking the most amount of the resources. If an algorithm takes
O(an3 + bn2) amount of time it might as well just be counted as O(an3) or O(n3). This is true of
any algorithm and any resource you choose to count.

12 c© Robert Heckendorn (2013)



2.4. ORDER NOTATION

2.4.5 Comparing Order of Growth

In selecting what algorithm of several to use you should compare the performance measures for the
algorithms. How do you compare algorithm performance for two different algorithms in terms
of the consumption of a resource (typically either space or time)? If you have the performance in
order notation you are asking which grows faster f(n) or g(n)?

Limit Method

lim
n→∞

f(n)/g(n)

g > f if lim = 0
g = f if lim = c where c > 0
g < f if lim =∞ where c > 0

Example:

lim
n→∞

10000n/(n2) = 0

Example:

lim
n→∞

(n(n+ 1)/2)/(n2) = lim
n→∞

n2/(2n2) + n/(2n2)

= lim
n→∞

1/2 + 1/(2n)

= 1/2

L’Hôpital’s Rule

If you know:

lim
n→∞

f(n) =∞ and lim
n→∞

g(n) =∞

and the derivatives of f and g exist then

lim
n→∞

f(n)/g(n) = lim
n→∞

f ′(n)/g′(n)

Example:

f(n) = log(n) and g(n) = n

then

lim
n→∞

log(n)/n = lim
n→∞

(1/n)/1 = 0

Some other helpful tips:

13 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

1. Logs used in “order of execution” operations are the same regardless of the base of the
logarithm.

Θ(loga(n)) = Θ(logb(n))

This is because they are only different by a constant factor:

loga(n)/ logb(n) = ln(b)/ ln(a)

(ln(a)/ ln(b)) loga(n) = logb(n)

2. All polynomials of the same degree are of the same class.

3. For a > 0

log(n) < na < an < n! < nn

4. an and bn with a 6= b have different orders of growth!

Let’s check this by taking limit.

lim
n→∞

ab/bn = lim
n→∞

(a/b)n

2.5 Analysis of Nonrecursive Algorithms

The steps involved in analyzing an algorithm:

• How is input size measured?

• What is the key operation used to measure resource use?

• Check that resource consumption is a function of input size and not some other unmeasured
things.

• Find formulation for resource consumption in terms of input size (may not be simple).

• Find simpler limiting function for resource consumption.

14 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

Table 2.1: Table of number of “steps” of execution for various orders of execution.

n 1 log2(n)
√
n n n log2(n) n3/2 n2 n3 n4 2n n!

2. 1. 1. 1.41421 2. 2. 2.82843 4. 8. 16. 4. 2.

3. 1. 1.58496 1.73205 3. 4.75489 5.19615 9. 27. 81. 8. 6.

4. 1. 2. 2. 4. 8. 8. 16. 64. 256. 16. 24.

5. 1. 2.32193 2.23607 5. 11.6096 11.1803 25. 125. 625. 32. 120.

6. 1. 2.58496 2.44949 6. 15.5098 14.6969 36. 216. 1296. 64. 720.

7. 1. 2.80735 2.64575 7. 19.6515 18.5203 49. 343. 2401. 128. 5040.

8. 1. 3. 2.82843 8. 24. 22.6274 64. 512. 4096. 256. 40320.

9. 1. 3.16993 3. 9. 28.5293 27. 81. 729. 6561. 512. 362880.

10. 1. 3.32193 3.16228 10. 33.2193 31.6228 100. 1000. 10000. 1024. 3.6288× 106

11. 1. 3.45943 3.31662 11. 38.0537 36.4829 121. 1331. 14641. 2048. 3.99168× 107

12. 1. 3.58496 3.4641 12. 43.0196 41.5692 144. 1728. 20736. 4096. 4.79002× 108

13. 1. 3.70044 3.60555 13. 48.1057 46.8722 169. 2197. 28561. 8192. 6.22702× 109

14. 1. 3.80735 3.74166 14. 53.303 52.3832 196. 2744. 38416. 16384. 8.71783× 1010

15. 1. 3.90689 3.87298 15. 58.6034 58.0948 225. 3375. 50625. 32768. 1.30767× 1012

16. 1. 4. 4. 16. 64. 64. 256. 4096. 65536. 65536. 2.09228× 1013

17. 1. 4.08746 4.12311 17. 69.4869 70.0928 289. 4913. 83521. 131072. 3.55687× 1014

18. 1. 4.16993 4.24264 18. 75.0587 76.3675 324. 5832. 104976. 262144. 6.40237× 1015

19. 1. 4.24793 4.3589 19. 80.7106 82.8191 361. 6859. 130321. 524288. 1.21645× 1017

20. 1. 4.32193 4.47214 20. 86.4386 89.4427 400. 8000. 160000. 1.04858× 106 2.4329× 1018

21. 1. 4.39232 4.58258 21. 92.2387 96.2341 441. 9261. 194481. 2.09715× 106 5.10909× 1019

22. 1. 4.45943 4.69042 22. 98.1075 103.189 484. 10648. 234256. 4.1943× 106 1.124× 1021

23. 1. 4.52356 4.79583 23. 104.042 110.304 529. 12167. 279841. 8.38861× 106 2.5852× 1022

24. 1. 4.58496 4.89898 24. 110.039 117.576 576. 13824. 331776. 1.67772× 107 6.20448× 1023

25. 1. 4.64386 5. 25. 116.096 125. 625. 15625. 390625. 3.35544× 107 1.55112× 1025

Table 2.2: Number of seconds of execution for a 1µs time step function for various orders of
execution.

n 1 log2(n)
√
n n n log2(n) n2 n3 2n n!

10. 10−6 3.3× 10−6 3.2× 10−6 0.00001 0.000033 0.0001 0.001 0.001 3.6

100. 10−6 6.6× 10−6 0.00001 0.0001 0.00066 0.01 1. 1.3× 1024 9.3× 10151

1000. 10−6 9.97× 10−6 0.000032 0.001 0.01 1. 1000. 1.1× 10295 4.0× 102561

10000. 10−6 0.000013 0.0001 0.01 0.13 100. 106 2.0× 103004 2.8× 1035653

100000. 10−6 0.000017 0.00032 0.1 1.7 10000. 109 1.0× 1030097 2.8× 10456567

15 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

2.5.1 Some Useful Sums

First we will need some useful sums

n∑
i=1

i = 1 + 2 + 3 + 4 + · · ·+ n =
n(n+ 1)

2
≈ n2

2

n∑
i=1

i2 = 12 + 22 + 32 + 42 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
≈ n3

3

n∑
i=1

i3 = 13 + 23 + 33 + 43 + · · ·+ n3 =

(
n(n+ 1)

2

)2

≈ n4

4

n∑
i=0

ai = 1 + a+ a2 + a3 + · · ·+ an =
an+1 − 1

a− 1
for a 6= 1

Some example uses:

What is
∑n

j=1

∑j
i=1 i (note the bounds on the sums)?

Answer:

16 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

n∑
j=1

j∑
i=1

i =

n∑
j=1

j(j + 1)

2

=
n∑

j=1

(
1

2
j2 +

1

2
j

)

=
n∑

j=1

1

2
j2 +

n∑
j=1

1

2
j

=
1

2

n∑
j=1

j2 +
1

2

n∑
j=1

j

=
1

2

n(n+ 1)(2n+ 1)

6
+

1

2

n(n+ 1)

2

=
1

2

n(n+ 1)(2n+ 1)

6
+

1

2

n(n+ 1)

2

=
1

12
(n(n+ 1)(2n+ 1) + 3n(n+ 1))

=
1

12
n(n+ 1)((2n+ 1) + 3)

=
1

12
n(n+ 1)(2n+ 4)

=
1

6
n(n+ 1)(n+ 2)

What is
∑n

i=1

∑n
j=i+1 1?

Answer:

n∑
i=1

n∑
j=i+1

1 =
n∑

i=1

(n− i)

=

n∑
i=1

n−
n∑

i=1

i

= n2 − n(n+ 1)

2

=
n2 − n

2

What is
∑n

i=1

∑n
j=1 ij?

17 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

Answer:

n∑
i=1

n∑
j=1

ij =
n∑

i=1

i
n∑

j=1

j

=

n∑
i=1

i

(
n(n+ 1)

2

)

=

(
n(n+ 1)

2

) n∑
i=1

i

=

(
n(n+ 1)

2

)(
n(n+ 1)

2

)
=

(
n(n+ 1)

2

)2

The Harmonic Series

The Harmonic Series is useful when you get a sum of reciprocals.

18 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

Here is an upper bound for the Harmonic Series:

Hn − 1 =
n∑

k=2

1/k

Hn − 1 = 1/2 + 1/3 + 1/4 + · · ·+ 1/n

Hn − 1 <

∫ n

1

1

x
dx

Hn − 1 < (ln(n)− ln(1))

Hn < 1 + ln(n)

19 c© Robert Heckendorn (2013)



2.5. ANALYSIS OF NONRECURSIVE ALGORITHMS

Here is an lower bound for the Harmonic Series:

Hn =

n∑
k=1

1/k

Hn >

∫ n+1

1

1

x
dx

Hn > ln(n+ 1)− ln(1)

Hn > ln(n+ 1)

20 c© Robert Heckendorn (2013)



2.6. SOME EXAMPLE ANALYSES

2.6 Some Example Analyses

2.6.1 Find the Maximum of a List

FIND THE MAXIMUM ELEMENT

def maxelem(l) :

maxval = l[0]

for i in range(1, len(l)) :

if l[i] > maxval : maxval = l[i]

return maxval

print(maxelem([31, 1, 4, 1, 5, 9, 2]))

print(maxelem([31, 1, 49, 1, 5, 9, 2]))

print(maxelem([3, 1, 4, 1, 5, 9, 265]))

The cost C(n) for input size n assumes a key operation of testing an element to see if it is a new
max: if l[i] > maxval : maxval = l[i]. It happens each time through the loop therefore:

C(n) =

n−1∑
i=1

1 = n− 1 ∈ Θ(n).

2.6.2 Does List Have Only Unique Values?

ARE ALL THE ELEMENTS UNIQUE

def unique(l) :

for i in range(0, len(l)-1) :

for j in range(i+1, len(l)) :

if l[i] == l[j] : return False

return True

print(unique([31, 1, 4, 1, 5, 9, 2]))

21 c© Robert Heckendorn (2013)



2.7. MATRIX MULTIPLY

print(unique([31, 1, 49, 11, 5, 9, 2]))

print(unique([3, 1, 4, 11, 5, 9, 265, 3]))

print(unique([3, 1, 4, 11, 11, 5, 9, 265]))

The Analysis of the worst case with the test being the key operation:

Cworst(n) =
n−2∑
i=0

n−1∑
i=i+1

1

=
n−2∑
i=0

(n− 1− i)

=

n−2∑
i=0

(n− 1)−
n−2∑
i=0

i

= (n− 1)2 − (n− 2)(n− 1)

2

=
2(n− 1)(n− 1)− (n− 2)(n− 1)

2

=
n− 1

2
(2n− 2− n+ 2)

=
n− 1

2
n

∈ Θ(n2)

2.7 Matrix Multiply

The following is an example of an O(n3) algorithm where n measures the number of multiplies done
as a measure of execution time.

22 c© Robert Heckendorn (2013)



2.8. RECURSIVE ANALYSIS

MATRIX MULTIPLY

import numpy as np # numpy only reliably is found for Python 2

# assume square matrix

def mm(a, b) :

c = np.zeros_like(a)

for i n range(0, len(a)) :

for j in range(0, len(a)) :

c[i][j] = 0

for k in range(0, len(a)) :

c[i][j] += a[i][k]*b[k][j]

return c

x = np.array([[1,2], [7, 11]])

y = np.array([[1, 0], [0, 1]])

print(mm(x, y))

Here the computation is straight forward:

C(n) =
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

1 ∈ Θ(n3).

2.8 Recursive Analysis

Many algorithms are best comprehended/implemented recursively.

2.9 Space Allocation (Number as Binary String)

2.9.1 Basic Recursive Number to Binary Algorithm

Consider this algorithm where size is the number of bits to display of the number.

23 c© Robert Heckendorn (2013)



2.9. SPACE ALLOCATION (NUMBER AS BINARY STRING)

NUMBER TO BINARY ALGORITHM

def num2bin(n, size) :

if size==0 : return ""

elif n%2==0 : return num2bin(n//2, size-1) + "0"

else : return num2bin(n//2, size-1) + "1"

# TEST CODE:

for i in range(0, 20) :

print(num2bin(i, 8))

The basic unit of work (key operation) in this case is the number of characters copied when the
string concatenation is performed with the + operator.

For a number that takes bits bits to represent: the number of characters copied at each recursive
call is:

bits+ (bits− 1) + (bits− 2) + (bits− 3) + · · ·+ 1 =
bits(bits+ 1)

2

2.9.2 Divide and Conquer Recursive Number to Binary Algorithm

In this version of the algorithm, we divide the work in half to prevent a lot of concatenating.

NUMBER TO BINARY

def num2bin(n, size) :

if size == 1 :

if n%2==1 : return "1"

else : return "0"

b2 = size//2

return num2bin(n//(2**b2), size-b2) + num2bin(n, b2)

The analysis of the space consumed in the this last algorithm precedes as follows:

24 c© Robert Heckendorn (2013)



2.9. SPACE ALLOCATION (NUMBER AS BINARY STRING)

Let bits = 2k be the size of the problem then

M(bits) =

{
bits+ 2M(bits/2) if bits > 1

1 if bits = 1

M(bits) = bits+ 2M(bits/2)

M(bits) = bits+ 2(bits/2 + 2M(bits/4))

M(bits) = bits+ 2(bits/2 + 2M(bits/4))

M(bits) = bits+ bits+ 4M(bits/4)

M(bits) = bits+ bits+ 4(bits/4 + 2M(bits/8))

M(bits) = bits+ bits+ bits+ 8M(bits/8)

...
...

(substitute 2k for bits and notes that bits is added k times in that case)

M(bits) = k2k + 2kM(2k/2k))

= k2k + 2k

= (k + 1)2k

= k2k + 2k NOTE: k2k dominates so ignore 2k

(substitute bits for 2k and log(bits) for k)

= log2(bits)bits

So the answer is O(log2(bits)bits).

For example if the number of bits is 32 then k = 5 and so 5 ∗ 32 + 32 = 192 characters.

In the algorithm that adds one character at a time, if size = 2k then it takes 2k(2k+1)
2 which for

k = 5 is 496 characters. This is much slower to copy all those characters.

2.9.3 Using Faster Operators

As a note about Python: This algorithm has the same analysis as the previous but replaces some
slower operators with faster ones. The bitwise logical and operator n&1 tests to see if the least
significant bit is 1 or 0. This is a fast test for if n is odd or even. >> is a right shift operator.
For example >> 1 divides by 2, >> 2 divides by 4, >> 3 divides by 8, etc. This removes all the
slow operators such as divide, mod, and exponentiation.

25 c© Robert Heckendorn (2013)



2.10. TOWERS OF HANOI

def num2bin(n, size) :

if size == 1 :

if n&1==1 : return "1"

else : return "0"

b2 = size>>1

return num2bin(n>>b2, size-b2) + num2bin(n, b2)

2.10 Towers of Hanoi

The following algorithm does the tower of Hanoi and keeps track of how many disks are on each
pole. Note that from is a keyword in Python so if we want to keep this code executable we have
to alter the variable name to frum in order to to prevent an error if we try to execute it.

TOWER OF HANOI WITH DISK COUNT

def other(frum, to) : return 3 - (frum + to)

def hanoi(disks, howmany, frum, to):

if howmany>1 : hanoi(disks, howmany-1, frum, other(frum, to))

disks[frum] -= 1

disks[to] += 1

print("move", frum, "to", to, disks)

if howmany>1 : hanoi(disks, howmany-1, other(frum, to), to)

disks = [6, 0, 0]

hanoi(disks, disks[0], 0, 2)

This algorithm shows that you don’t even need to keep track of the number of disks on each pole
in order to answer the question: what disk do you move next?

26 c© Robert Heckendorn (2013)



2.10. TOWERS OF HANOI

TOWER OF HANOI

def other(frum, to) : return 3 - (frum + to)

def hanoi(howmany, frum, to):

if howmany>1 : hanoi(howmany-1, frum, other(frum, to))

print("move", frum, "to", to)

if howmany>1 : hanoi(howmany-1, other(frum, to), to)

Test code for the towers of Hanoi:

hanoi(6, 0, 2)

How many disks are moved when you start with d disks? This is a exercise that assumes the key
operation is moving a disk which happens in one place in the code. Assuming the number of disks
moved is D(d) then the recurence relation is:

D(d) =

{
D(d− 1) + 1 +D(d− 1) if d > 1

1 if d = 1

Using substitution again we get:

D(d) = 2D(d− 1) + 1

= 2(2D(d− 2) + 1) + 1

= 2(2(2D(d− 3) + 1) + 1) + 1

= 2d−1 + 2d−2 + 2d−3 + · · ·+ 4 + 2 + 1

= 2d − 1

27 c© Robert Heckendorn (2013)



2.10. TOWERS OF HANOI

28 c© Robert Heckendorn (2013)



Chapter 3

Divide and Conquer

3.1 The Master Theorem

The Master Theorem is useful when the problem is broken up into b equal parts with some assembly
required that takes f(n) to do.

Given:

T (n) = aT (n/b) + f(n) where f(n) ∈ Θ(nd), d ≥ 0

Then

If a < bd then T (n) ∈ Θ(nd)

If a = bd then T (n) ∈ Θ(nd log(n))

If a > bd then T (n) ∈ Θ(nlogb(a))

Note: The same results hold with O instead of Θ.

Examples:

If T (n) = 4T (n/2) + n then a = 4, b = 2, d = 1 so 4 > 21 therefore T (n) ∈ Θ(nlog2(4)) = Θ(n2)

If T (n) = 4T (n/2) + n2 then a = 4, b = 2, d = 2 so 4 = 22 therefore T (n) ∈ Θ(n2 log(n))

If T (n) = 4T (n/2) + n3 then a = 4, b = 2, d = 3 so 4 < 23 therefore T (n) ∈ Θ(n3)

If T (n) = 2T (n/2) + n then a = 2, b = 2, d = 1 so 2 = 21 therefore T (n) ∈ Θ(n1 log(n)) =
Θ(n log(n))

If T (n) = 7T (n/2) + 1 then a = 7, b = 2, d = 0 so 7 > 20 therefore T (n) ∈ Θ(nlog2(7)) = Θ(n2.807)

29



3.1. THE MASTER THEOREM

Note that if a = b and f(n) = O(n) which makes d = 1 then T (n) = aT (n/a) + O(n) and by the
Master Theorem T (n) ∈ Θ(n log(n)) regardless of the value of a.

30 c© Robert Heckendorn (2013)


