
Tables of Implications and Tautologies from Symbolic Logic

Dr. Robert B. Heckendorn
Computer Science Department, University of Idaho

March 17, 2021

Here are some tables of logical equivalents and implications that I have found useful over the years.
Where there are classical names for things I have included them. “Isolation by Parts” is my own invention.
By tautology I mean equivalent left and right hand side and by implication I mean the left hand
expression implies the right hand. I use the tilde and overbar interchangeably to represent negation e.g.
∼x is the same as x. Enjoy!

Table 1: Properties of All Two-bit Operators. The Comm. is short for commutative and Assoc. is
short for associative. Iff is short for “if and only if”.

Truth Name Comm./ Binary And/Or/Not Nands Only
Table Assoc. Op

0000 False CA 0 0 (a ↑ (a ↑ a)) ↑ (a ↑ (a ↑ a))
0001 And CA a ∧ b a ∧ b (a ↑ b) ↑ (a ↑ b)
0010 Minus b− a a ∧ b (b ↑ (a ↑ a)) ↑ (a ↑ (a ↑ a))
0011 B A b b b

0100 Minus a− b a ∧ b (a ↑ (a ↑ a)) ↑ (a ↑ (a ↑ b))
0101 A A a a a

0110 Xor/NotEqual CA a⊕ b (a ∧ b) ∨ (a ∧ b) (b ↑ (a ↑ a)) ↑ (a ↑ (a ↑ b))
(a ∨ b) ∧ (a ∨ b)

0111 Or CA a ∨ b a ∨ b (a ↑ a) ↑ (b ↑ b)
1000 Nor C a ↓ b a ∧ b ((a ↑ a) ↑ (b ↑ b)) ↑ ((a ↑ a) ↑ a)

1001 Iff/Equal CA a↔ b (a ∨ b) ∧ (a ∨ b) ((a ↑ a) ↑ (b ↑ b)) ↑ (a ↑ b)
(a ∧ b) ∨ (a ∧ b)

1010 Not A a a a ↑ a
1011 Imply a→ b a ∨ b (a ↑ (a ↑ b))
1100 Not B b b b ↑ b
1101 Imply b→ a a ∨ b (b ↑ (a ↑ a))

1110 Nand C a ↑ b a ∨ b a ↑ b
1111 True CA 1 1 (a ↑ a) ↑ a

1



Table 2: Tautologies (Logical Identities)

Commutative Property: p ∧ q ↔ q ∧ p
p ∨ q ↔ q ∨ p
p⊕ q ↔ q ⊕ p

Associative Property: (p ∧ q) ∧ r ↔ p ∧ (q ∧ r)
(p ∨ q) ∨ r ↔ p ∨ (q ∨ r)
(p⊕ q)⊕ r ↔ p⊕ (q ⊕ r)

Distributive Property: p ∧ (q ∨ r) ↔ (p ∧ q) ∨ (p ∧ r)
p ∧ (q ⊕ r) ↔ (p ∧ q)⊕ (p ∧ r)
p ∨ (q ∧ r) ↔ (p ∨ q) ∧ (p ∨ r)
p ∨ (q → r) ↔ (p ∨ q)→ (p ∨ r)
p→ (q ∧ r) ↔ (p→ q) ∧ (p→ r)
p→ (q ∨ r) ↔ (p→ q) ∨ (p→ r)

De Morgan’s Laws: ∼(p ∧ q) ↔ ∼p∨ ∼q
∼(p ∨ q) ↔ ∼p∧ ∼q
∼(p⊕ q) ↔ ∼p⊕ q
∼(p⊕ q) ↔ p⊕ ∼q
∼(p→ q) ↔ p∧ ∼q

Transposition (Contrapositive): p→ q ↔ ∼q →∼p
p⊕ q ↔ ∼p⊕ ∼q

Involution (Double Negation): ∼∼p ↔ p
Material Implication: p→ q ↔ ∼p ∨ q
Material Equivalence (Biconditional): (p→ q) ∧ (q → p) ↔ p↔q
Partial Associativity: p→ (q → r) ↔ q → (p→ r)
Exportation: (p ∧ q)→ r ↔ p→ (q → r)
Absurdity: (p→ q) ∧ (p→∼q) ↔ ∼p

(∼p ∨ q) ∧ (p ∨ r) ↔ (p ∧ q) ∨ (∼p ∧ r)
Absorption: (p ∧ q) ∨ p ↔ p

(p ∨ q) ∧ p ↔ p
Isolation by Parts (of p by q): (p∧ ∼q) ∨ (p ∧ q) ↔ p

(p∧ ∼q)⊕ (p ∧ q) ↔ p

Destructive Distribution: p ∧ (∼p ∨ q) ↔ p ∧ q
p ∧ (∼p⊕ q) ↔ p ∧ q
p ∧ (p→ q) ↔ p ∧ q
p ∨ (∼p ∧ q) ↔ p ∨ q
p ∨ (p⊕ q) ↔ p ∨ q

p ∨ (∼p→ q) ↔ p ∨ q
p→ (∼p ∨ q) ↔ p→ q
p→ (∼p⊕ q) ↔ p→ q

(p ∨ q)→ q ↔ p→ q
(p⊕ q)→ q ↔ p→ q

(p→ q)→ p ↔ p
p− (q − p) ↔ p

Right Distribution of Implies (p→ r) ∨ (q → r) ↔ (p ∧ q)→ r
(p→ r) ∧ (q → r) ↔ (p ∨ q)→ r
(p→ r)⊕ (q → r) ↔ ∼((p⊕ q)→ r)

2



Table 3: Multiple Statement Classical Implications These are the classical logical implications from
arguments. The semicolon separates different statements in a proof. The semicolon can be replaced by a
logical andand it becomes a single true statement.

Modus Ponens: p→ q ; p → q
Modus Tollens: p→ q ; ∼q → ∼p
Hypothetical Syllogism: p→ q ; q → r → p→ r
Disjunctive Syllogism: p ∨ q ; ∼p → q
Constructive Dilemma: (p→ q) ∧ (r → s) ; p ∨ r → q ∨ s
Destructive Dilemma: (p→ q) ∧ (r → s) ; ∼q∨ ∼s → ∼p∨ ∼r
Conjunction: p ; q → p ∧ q
(no name): p → q → p

Table 4: Single Statement Implications Some of these are named classical logical implications and
others are simply unnamed tautologous implications. Resolution is useful in eliminating a variable from
an expression in conjunctive normal form. This happens in the Davis-Putnam algorithm for example.

Simplification: p ∧ q → p
Addition: p → p ∨ q
Subtraction: p− q → p
Law of Resolution: (p ∨ q) ∧ (∼p ∨ r) → q ∨ r
Weakening: p↔ q → p→ q

∼(p→ q) → q → p
p→ q → p ∧ q
p→ q → (p ∧ r)→ q
p→ q → (p ∧ r)→ (q ∧ r)
p→ q → (p ∨ r)→ (q ∨ r)
p⊕ q → p ∨ q
p ∧ q → p ∨ q

3



Table 5: Equivalents in Packing and Unpacking Bit Fields In contrast to previous sections, this
section deals with operators that work only on bitstrings. Specifically, the symbols ` and a are pack and
unpack bit fields. (p a m) means to unpack the string p using mask m. For example: (1011 a 110011)
gives 100011. The length of p must be the same as the number of 1 bits in m. (p ` m) means to pack
the string p using mask m. For example: (1011011 ` 1100111) gives 10011. The length of p must be the
same as the length of m. The resulting string has the same number of bits as there are 1 bits in m. An
alternate implementation of this operator may pad the resulting bitstring on the left with 0 so that the
result is the same length as the two operands. The results of both forms contain equal information. All
logic operators are bitwise operators. Overbar is the one’s complement operator. ~1 is a string of all 1 bits.
The equals sign means the bit strings are identical. The names of these theorems are my own.

Compressive Subset (p ` p) = (~1 ` p)

Inverse Property: (p a m) ` m = p ∧ (~1 ` m)
Semi-Inverse Property: (p ` m) a m = p ∧m
Associative Property: ((p a m) a n) = (p a (m a n))

Negation of Pack: p ` m = (p ` m) ∨ (~1 ` m)

Negation of Unpack: p a m = m ∨ (p a m)

p a m = m⊕ (p a m)
Distributive Property: (p ∨ q) a m = (p a m) ∨ (q a m)

(p⊕ q) a m = (p a m)⊕ (q a m)
(p ∧ q) a m = (p a m) ∧ (q a m)
(p ∨ q) ` m = (p ` m) ∨ (q ` m)
(p⊕ q) ` m = (p ` m)⊕ (q ` m)
(p ∧ q) ` m = (p ` m) ∧ (q ` m)

Destructive Distribution: (m ∧ p) ` p = m ` p
(m⊕ p) ` p = m ` p
(m a p) ∧ p = m a p
(m a p)⊕ p = m a p

(p a (m ∨ n)) ` m = p ` (m ` (m ∨ n))

4


